Some Named Theorems

\heartsuit

October 2018

Theorem 1 (Replacement Theorem)

Let V be a finite-dimensional vector space over F with basis $\mathscr{B} = \{v_1, \ldots, v_n\}$. Let $v \in V$, with $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$, $\alpha_i \in F$ where some α_i is nonzero. Then $\{v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_n\}$ is a basis for V.

Proof. By change of notation, we may assume that $\alpha_1 \neq 0^1$. Thus, α_1^{-1} exists². Thus,

$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n \implies$$
$$v_1 = \alpha_1^{-1} v - \alpha_1^{-1} \alpha_2 v_2 - \ldots - \alpha_1^{-1} \alpha_n v_n \in \operatorname{Span}(v, v_2, \ldots, v_n)$$

By the **Important Exercise**, we have $\operatorname{Span}(v_1, \ldots, v_n) = \operatorname{Span}(v, v_1, \ldots, v_n) = \operatorname{Span}(v, v_2, \ldots, v_n)$, i.e., $\{v, v_2, \ldots, v_n\}$ spans V.

Suffices to show that $\{v, v_2, \ldots, v_n\}$ is linearly independent³. For the sake of contradiction, assume the set isn't linearly independent. Then, $\exists \beta_1, \ldots, \beta_n$ not all zero such that

$$\beta v + \beta_2 v_2 + \ldots + \beta_n v_n = 0$$

Case I ($\beta = 0$): Then $0 = \beta_2 v_2 + \ldots + \beta_n v_n$ with not all $\beta_i = 0$, i.e., $\{v_2, \ldots, v_n\}$ is linearly dependent, hence \mathscr{B} is linearly dependent. This is a contradiction!

Case II ($\beta \neq 0$): Since $\beta \neq 0$, β^{-1} is alive and kicking. So,

$$v = -\beta^{-1}\beta_2 v_2 - \ldots - \beta^{-1}\beta_n v_n$$

 $^{^1\}mathrm{All}$ this means is that since some a_i is nonzero, we can, without loss of generality, assume it's the first one.

²Because it's a nonzero element of a field F.

 $^{^3\}mathrm{We}{}'\mathrm{ve}$ already shown that it spans, so this is the only remaining condition for it to be a basis.

$$= 0 \cdot v_1 - \beta^{-1}\beta_2 v_2 - \ldots - \beta^{-1}\beta_n v_n$$

Recall from above that

 ϵ

$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n$$

Setting these two things equal to each other, we get

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 = 0 \cdot v_1 - \beta^{-1} \beta_2 v_2 - \ldots - \beta^{-1} \beta_n v_n$$

However, by the **Coördinate Theorem**, in a basis, coördinates are unique! But we said at the beginning that $\alpha_1 \neq 0$, so this is a contradiction⁴. got 'em!

Note 2

On an intuitive level, the reason we split the proof into two cases is because we always want β to have an inverse. For that to happen, we quickly show that the case where it doesn't have an inverse (i.e., equals zero) doesn't work.

More concisely,

Note 3

If it's non-zero, then it has an inverse, so divide by it.

Theorem 4 (Main Theorem)

Suppose V is a finite-dimensional vector space over F, and $V = \text{Span}(v_1, \ldots, v_n)$. Then any linearly independent subset in V has at most n elements; i.e., if S is a linearly independent subset, $|S| \leq n$.

Proof. By the **Toss-Out Theorem**, $\{v_1, \ldots, v_n\}$ is a basis. In particular, we may assume $\{v_1, \ldots, v_n\}$ is a basis to show $|S| \leq n$.

Suffices to show that if $S = \{w_1, \ldots, w_m\}$ is linearly independent in V, then $m \leq n$. Assume m < n.

Claim 4.1. After changes of notation (on the v_i 's) if necessary, then for each $k < n, \{w_1, \ldots, w_k, v_{k+1}, \ldots, v_n\}$ is linearly independent.

⁴Right? cause $\alpha_1 v_1 = 0 \cdot v_1$ by the Coordinate theorem, but we said that $\alpha_1 \neq 0$.

Clearly, the claim implies the proof of the theorem. To see why, apply the claim to n = k. Then, $\{w_1, \ldots, w_n\}$ is a basis. Then, $w_{n+1} \in \text{Span}(w_1, \ldots, w_n) = V$, so $\{w_1, \ldots, w_{n+1}\}$ is linearly dependent. Thus, proving the claim will show the theorem.

Proof of claim. We prove this by induction ok k.

Let k = 1. Then $0 \neq w_1 \in \text{Span}(v_1, v_2, ..., v_n)$.

 $0 \neq w_1 = \alpha_1 v_1 + \ldots + \alpha_n v_n$, not all $\alpha_i = 0$. After changing notation, we can assume that $\alpha_1 \neq 0$, so $\{w_1, v_2, \ldots, v_n\}$ is a basis by the **Replacement Theorem** (1).

Inductive step: Assume that for some $k, k < n, \{w_1, \ldots, w_k, v_{k+1}, \ldots, v_n\}$ is a basis. We want to show that $\{w_1, \ldots, w_{k+1}, v_{k+2}, \ldots, v_n\}$ is a basis (up to changing notation). We have that $0 \neq w_{k+1} = \alpha_1 w_1 + \ldots + \alpha_k w_k + \beta_{k+1} v_{k+1} + \ldots + \beta n v_n$, where $\alpha_i, \beta_i \in F$ are not all zero.

Case I ($\beta_i = 0 \ \forall i$): Then $w_{k+1} \in \text{Span}(w_1, \dots, w_k)$, contradicting the linear independence of the set $\{w_1, \dots, w_m\}$.

Case II $(\exists \beta_j \neq 0)$: Changing notation, we may assume that $\beta_{k+1} \neq 0$. Hence, $\{w_1, \ldots, w_{k+1}, v_{k+2}, \ldots, v_n\}$ is a basis by the **Replacement Theorem** (1). \Box

Corollary 5

Let V be a finite-dimensional vector space over F with bases $\mathscr{B}_1, \mathscr{B}_2$. Then $|\mathscr{B}_1| = |\mathscr{B}_2|$. We call $|\mathscr{B}_1|$ the **dimension** of V and write dim_F V or dim V.

Proof. By definition, there exists a basis \mathscr{C} for V such that $|\mathscr{C}| < \infty$. If \mathscr{B} is another basis, then $|\mathscr{B}| \leq |\mathscr{C}|$ by the **Main Theorem** (4). Also, $|\mathscr{C}| \leq |\mathscr{B}|$. Thus, $|\mathscr{B}| = |\mathscr{C}|$.

Corollary 6

Let V be a finite-dimensional vector space over F of dimension n > 0, and $0 \neq S \subset V$ a subset. Then

- a) If |S| > n, then S is linearly dependent.
- b) If |S| < n, then S does not span V.

Proof. The theorem tells us that the maximal linearly independent set in V is a basis. By the **Toss-Out Theorem**, a minimal spanning set of V is a basis. \Box

Theorem 7 (Extension Theorem)

Let V be a finite-dimensional vector space over F, and suppose $W \subset V$ is a subspace. Suppose $S \subset W$ is a linearly independent subset. Then S is finite, and part of a basis for W.

Proof. We have $|S| \leq \dim V < \infty$ by the **Main Theorem**. If W = Span(S), W is a basis by definition, so we're done. If not, $\exists w_1 \in W \setminus \text{Span}(S)$. By the **Toss-In Theorem**, $\exists w_1 \in W$ such that $S \cup \{w_1\}$ is linearly independent. Call this set $S_1 := S \cup \{w_1\}$.

Clearly, $|S_1| = |S| + 1$ since we just added another vector, and $\text{Span}(S) < \text{Span}(S_1)$.

If $\text{Span}(S_1) < W$, then $\exists w_2 \in W \ni S_2 = S_1 \cup \{w_2\}$ is linearly independent, by the **Toss-In Theorem**. $|S_2| = |S| + 2$.

Continue tossing in linearly independent vectors and, since W is finite, eventually $\text{Span}(S_n) = W$.

Corollary 8

Let V be a finite-dimensional vector space over F, and $S \subset V$ a linearly independent set. Then S can be extended to a basis of V.

Corollary 9

Let V be a finite-dimensional vector space over F and $W \subset V$ a subspace, then W is a finite dimensional vector space over F and dim $W \leq \dim V$, with equality holding if and only if V = W.

Theorem 10 (Counting Theorem)

Let V be a vector space over $F, W_1, W_2 \subset V$ be finite-dimensional subspaces. Then,

- 1. $W_1 \cap W_2$ is a finite-dimensional vector space.
- 2. $W_1 + W_2$ is a finite-dimensional vector space.

3. dim W_1 + dim W_2 = dim $(W_1 + W_2)$ + dim $(W_1 \cap W_2)$.

Proof. (1, 2): Let \mathscr{B}_i be a basis for W_i , $i \in \{1, 2\}$. Then $|\mathscr{B}_1 \cup \mathscr{B}_2| \leq |\mathscr{B}_1| +$ $|\mathscr{B}_2| < \infty.$

Hence, $\text{Span}(\mathscr{B}_1 \cup \mathscr{B}_2)$ is a finite-dimensional vector space by the **Toss-Out Theorem.** Also, $\text{Span}(\mathscr{B}_1 \cup \mathscr{B}_2) = W_1 + W_2$, so $W_1 + W_2$ is a finite-dimensional vector space.

(3): Let $\mathscr{B} = \{v_1, \ldots, v_n\}$ be a basis for $W_1 \cap W_2$. By the **Extension** Theorem, this extends to bases

$$\mathscr{C}_1 = \{v_1, \dots, v_n, y_1, \dots, y_m\}$$

for W_1 and

$$\mathscr{C}_2 = \{v_1, \dots, v_n, z_1, \dots, z_m\}$$

for W_2 .

Claim 10.1. $\mathscr{C} = \{v_1, \dots, v_n, y_1, \dots, y_m, z_1, \dots, z_r\}$ is a basis for $W_1 + W_2$.

Remark 11. If we show this claim, we're done.

Proof of claim. (\mathscr{C} spans $W_1 + W_2$): This is true, since $W_1 + W_2 = \operatorname{Span}(\mathscr{C}_1 \cup$ \mathscr{C}_2) = Span(\mathscr{C}).

(\mathscr{C} linearly independent): For the sake of contradiction, assume it isn't. Then there exist $\alpha_i, \beta_i, \gamma_i \in F$, not all zero, such that

 $\alpha_1 v_1 + \ldots + \alpha_n v_n + \beta_1 y_1 + \ldots + \beta_m y_m + \gamma_1 z_1 + \ldots + \gamma_r z_r = 0$

Case I ($\gamma_i = 0 \ \forall i$). This can't be true, since it would contradict the linear independence of C_1 .

Case II $(\exists i \ni \gamma_i \neq 0)$: Without loss of generality, we can say that $\gamma_1 \neq 0$. Note that

$$0 \neq z = \gamma_1 z_1 + \ldots + \gamma_r z_r \in \operatorname{Span}(\mathscr{C}_2) = W_2 \tag{1}$$

but also

$$z = -\alpha_1 v_1 - \ldots - \alpha_n v_n - \beta_1 y_1 - \ldots - \beta_m y_m \tag{2}$$

Setting (1) and (2) equal to each other, we get

 $\gamma_1 z_1 + \ldots + \gamma_r z_r = z = -\alpha_1 v_1 - \ldots - \alpha_n v_n - \beta_1 y_1 - \ldots - \beta_m y_m$

Hence $\exists \delta_1, \ldots, \delta_n \ni (0 \neq) z = \delta_1 v_1 + \ldots + \delta_n v_n$. Thus, we get that

$$\delta_1 v_1 + \ldots + \delta_n v_n + 0 \cdot z_1 + \ldots + 0 \cdot z_r = \gamma_1 z_1 + \ldots + \gamma_r z_r \neq 0$$

But $\gamma_1 \neq 0$, so by the **Coördinate Theorem** we get a contradiction, because \mathscr{C}_2 is a basis!

Corollary 12

If V is a finite-dimensional vector space over F, $W_1, W_2 \subset V$ finitedimensional subspaces such that $W_1 \cap W_2 = 0$, then dim $(W_1 + W_2) =$ dim W_1 + dim W_2 .

Theorem 13 (Dimension Theorem)

Let $T: V \longrightarrow W$ be linear with V a finite-dimensional vector space over F. Then

- 1. ker $T \subset V$ and im $T \subset W$ are finite-dimensional subspaces.
- 2. dim $V = \dim \ker T + \dim \operatorname{im} T$.

Proof. Let $n = \dim V$.

We have ker $T \subset V$ and im $T \subset W$ are subspaces. In particular, ker $T \subset V$ is a finite-dimensional subspace. Let $\mathscr{B}_0 = \{v_1, \ldots, v_m\}$ be a basis for ker T.

Extend \mathscr{B}_0 to $\mathscr{B} = \{v_1, \ldots, v_n\}$, a basis for V, using the **Extension Theorem**. It suffices to show that $\mathscr{C} = \{Tv_{m+1}, \ldots, Tv_n\}$ is a basis for im T^5 . So, let's show it!

(\mathscr{C} spans im T): Let $w \in \operatorname{im} T$, and $v \in V$ satisfy Tv = w. As \mathscr{B} is a basis for $V, v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ for some $\alpha_i \in F$. Thus,

w = Tv= $\alpha_1 Tv_1 + \ldots + \alpha_m Tv_m + \alpha_{m+1} Tv_{m+1} + \ldots + \alpha_n Tv_n$ = $\alpha_1 \cdot 0 + \ldots + \alpha_m \cdot 0 + \alpha_{m+1} Tv_{m+1} + \ldots + \alpha_n Tv_n \in \text{Span}(\mathscr{C})$

(\mathscr{C} is linearly independent): Observe that

 $\alpha_{m+1}Tv_{m+1} + \ldots + \alpha_nTv_n = 0$

for $\alpha_i \in F$, i > m + 1. By linearity,

$$T(0_V) = T(\alpha_{m+1}Tv_{m+1} + \ldots + \alpha_nTv_n) = 0_W$$

⁵Why? Make sure you understand this.

so $\alpha_{m+1}Tv_{m+1} + \ldots + \alpha_nTv_n \in \ker T$. As \mathscr{B}_0 is a basis for \ker_T , we know that

$$\alpha_{m+1}v_{m+1} + \ldots + \alpha_n v_n = \beta_1 v_1 + \ldots + \beta_m v_m$$

for some $\beta_i \in F$. Thus,

$$-\beta_1 v_1 - \ldots - \beta_m v_m + \alpha_{m+1} v_{m+1} + \ldots + \alpha_n v_n = 0$$

Since \mathscr{B} is linearly independent, $\beta_j = \alpha_i = 0 \ \forall i, j$.

Theorem 14 (Monomorphism Theorem)

Let $T: V \longrightarrow W$ be linear. Then the following are equivalent:

- 1. T is a monomorphism (i.e., T is one-to-one),
- 2. T takes linearly independent sets to linearly independent sets,
- 3. ker T = 0,
- 4. dim ker T = 0.

Proof. $(1 \implies 2)$: To show 2, it suffices to show *T* takes finitely many distinct linearly independent elements to linearly independent elements. Let v_1, \ldots, v_n in *V* be linearly independent, $\alpha_1, \ldots, \alpha_n \in F$. Since *T* is one-to-one and linear, $0_W = T(0_V) \implies 0 = \alpha_1 v_1 + \ldots + \alpha_n v_n$. By linearity, it follows that $\alpha_1 T v_1 + \ldots + \alpha_n T v_n = 0_W$, so $\alpha_i = 0 \forall i$, since $\{v_1, \ldots, v_n\}$ are linearly independent.

 $(2 \implies 3)$: Let $v \in V$, with $v \in \ker T$, so $T(v) = 0_W = T(0_V)$.

If $v \neq 0$, $\{v\}$ is linearly independent, as $\alpha v = 0 \implies \alpha = 0$ when $v \neq 0$. So $T(v) \neq 0$ by (2). Thus, ker T must equal 0.

 $(3 \iff 4)$: By definition.

 $(3 \implies 1) : Suppose \mathbf{T}(\mathbf{v}_1) = T(v_2), \text{ for some } v_1, v_2 \in V. \text{ So } 0 = T(v_1 - T(v_2) = T(v_1 - v_2) \implies v_1 - v_2 \in \ker T \implies v_1 = v_2.$

Note 15

This theorem states that ker T is the **obstruction** of T being a monomorphism.

Note 16

Recall that $W \cong W$ means only that $\exists T : V \longrightarrow W$ an isomorphism, **not** that all linear $S : V \longrightarrow W$ are isomorphisms.

Theorem 17 (Isomorphism Theorem)

Suppose $T: V \longrightarrow W$ with V, W finite-dimensional vector spaces of the same dimension over F; i.e., dim $V = \dim W < \infty$.

Then, the following are equivalent:

- 1. T is an isomorphism,
- 2. T is a monomorphism,
- 3. T is an epimorphism,
- 4. If $\mathscr{B} = \{v_1, \dots, v_n\}$ is a basis for V, then $\{Tv_1, \dots, Tv_n\}$ is a basis for W; i.e., T takes bases of V to bases of W,
- 5. \exists a basis for V such that T takes it to a basis for W.

Note 18

 $\dim V = \dim W < \infty$ is a very, very, very, very, very strong condition!

Proof. (1 \implies 2): \checkmark

 $(2 \iff 3)$: By the **Dimension Theorem**, dim $W = \dim V = \dim \ker T + \dim \operatorname{im} T < \infty$.

T is onto means that $W = \operatorname{im} T \iff \operatorname{dim} \operatorname{im} T = \operatorname{dim} W \iff \operatorname{ker} T = 0 \iff T$ is one-to-one⁶.

 $(2 \text{ and } 3 \implies 1): \checkmark$

 $(2 \implies 4)$: By the **Monomorphism Theorem**, $\{Tv_1, \ldots, Tv_n\}$ is linearly independent where $n = \dim W$, so it is a basis since it spans (by the Extension Theorem, or the Main Theorem, or whatever you want, really.)

 $(4 \implies 5): \checkmark$

 $(5 \implies 3)$: If $\mathscr{B} = \{v_1, \dots, v_n\}$ is a basis, $\{Tv_1, \dots, Tv_n\}$ is a basis. Hence, it spans. Thus, T is onto and therefore an epimorphism.

⁶We used the corollary to the **Extension Theorem** in the second if and only if.