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Theorem 1 (Replacement Theorem)
Let V be a finite-dimensional vector space over F' with basis Z = {v1, ..., v, }.
Let v € V, with v = ayv; + ... + a,v,, @; € F where some «; is nonzero.

Then {vy,...,v;—1,V,Vi41,...,Un} is a basis for V.

Proof. By change of notation, we may assume that oy # 0'. Thus, afl exists?.
Thus,

V=1V + ...+ o, —

-1 -1 -1
V] =Q] U — 0 QU —...— Q] QupUy € Span(v,ve, ..., Up)

By the Important Exercise, we have Span(vy,...,v,) = Span(v,v1,...,v,) =
Span(v,va, ..., v,), i.e., {v,va,...,v,} spans V.

Suffices to show that {v,va,...,v,} is linearly independent®. For the sake of
contradiction, assume the set isn’t linearly independent. Then, 331, ..., 3, not

all zero such that
ﬁv+ﬂ202+~“+5nvn =0

Case I (8 = 0): Then 0 = Bave + ... + Buv, with not all 8, = 0, ie.,
{va,...,v,} is linearly dependent, hence £ is linearly dependent. This is a
contradiction!

Case II (8 # 0): Since 8 # 0, 87! is alive and kicking. So,
v = —ﬁ_lﬂg’l}g e ﬁ_lﬂnvn

LAll this means is that since some a; is nonzero, we can, without loss of generality, assume
it’s the first one.

2Because it’s a nonzero element of a field F.

3We’ve already shown that it spans, so this is the only remaining condition for it to be a
basis.




=0-v1 — ﬁ_lﬂ2v2 el T ﬁ_lﬂnwn

Recall from above that
V=1V + ...+ a,U,
Setting these two things equal to each other, we get
a1 4. AUy, =0=0-v; — 87 Bovs — ... — B 1B, u,

However, by the Co6rdinate Theorem, in a basis, coordinates are unique!
But we said at the beginning that oy # 0, so this is a contradiction®. got 'em!
O

On an intuitive level, the reason we split the proof into two cases is because
we always want [ to have an inverse. For that to happen, we quickly show
that the case where it doesn’t have an inverse (i.e., equals zero) doesn’t

work.

More concisely,

If it’s non-zero, then it has an inverse, so divide by it.

Theorem 4 (Main Theorem)
Suppose V is a finite-dimensional vector space over F, and V' = Span(vy, ..., v,).
Then any linearly independent subset in V' has at most n elements; i.e., if

S is a linearly independent subset, |S| < n.

Proof. By the Toss-Out Theorem, {vy,...,v,} is a basis. In particular, we
may assume {vi,...,v,} is a basis to show |S| < n.
Suffices to show that if S = {ws,...,wp} is linearly independent in V, then

m < n. Assume m < n.

Claim 4.1. After changes of notation (on the v;’s) if necessary, then for each

k <mn,{wy,..., Wk, Vg1, ..,0,} is linearly independent.

4Right? cause ajv; = 0 - vy by the Coordinate theorem, but we said that ag # 0.



Clearly, the claim implies the proof of the theorem. To see why, ap-
ply the claim to n = k. Then, {wi,...,w,} is a basis. Then, w,4+1 €
Span(wy,...,w,) =V, so {wi,...,wyy1} is linearly dependent. Thus, proving

the claim will show the theorem.

Proof of claim. We prove this by induction ok k.
Let k = 1. Then 0 # wy € Span(vy, vy, ..., v,).

0 # w1 = aqvy + ... + apvy, not all a; = 0. After changing notation, we

can assume that oy # 0, so {wy,va,...,v,} is a basis by the Replacement
Theorem (1).

Inductive step: Assume that for some k, k < n, {w1,..., Wk, Vgt1,...,0n}
is a basis. We want to show that {wy,...,wk11,Vk42,...,0,} is a basis (up to

changing notation). We have that 0 # w11 = aqwy + ... + apwi + Br+1Vk+1 +
...+ Bnv,, where oy, 8; € F' are not all zero.

Case I (8; =0 Vi): Then wgyq € Span(wy, ..., wy), contradicting the linear
independence of the set {wy, ..., wn}.

Case II (35; # 0): Changing notation, we may assume that 1 # 0. Hence,
{wi,..., Wkt1,Vk+2,--.,0s} is a basis by the Replacement Theorem (1). O

O

Corollary 5
Let V be a finite-dimensional vector space over F' with bases %, %5. Then
| % | = |Pa|. We call | %] the dimension of V' and write dimp V or dim V.

Proof. By definition, there exists a basis € for V such that |€| < co. If B is
another basis, then |#| < || by the Main Theorem (4). Also, |%| < |4|.
Thus, |8| = |€]. O

Corollary 6
Let V be a finite-dimensional vector space over F' of dimension n > 0, and
0# S CV asubset. Then

a) If |S| > n, then S is linearly dependent.

b) If |S| < n, then S does not span V.



Proof. The theorem tells us that the maximal linearly independent set in V' is a

basis. By the Toss-Out Theorem, a minimal spanning set of V' is a basis. [

Theorem 7 (Extension Theorem)

Let V' be a finite-dimensional vector space over F', and suppose W C V is
a subspace. Suppose S C W is a linearly independent subset. Then S is
finite, and part of a basis for W.

Proof. We have |S| < dimV < oo by the Main Theorem. If W = Span(S),
W is a basis by definition, so we’re done. If not, Jw; € W\ Span(S). By the
Toss-In Theorem, Jw; € W such that S U {w;} is linearly independent. Call
this set S1 := S U {w;}.

Clearly, |S1]| = |S| + 1 since we just added another vector, and Span(S) <
Span(Sy).

If Span(S7) < W, then Jwy € W 3 Sy = 57 U {ws}is linearly independent,
by the Toss-In Theorem. |S;| = |S| + 2.

Continue tossing in linearly independent vectors and, since W is finite,

eventually Span(S,,) = W. O

Corollary 8
Let V be a finite-dimensional vector space over F', and S C V a linearly

independent set. Then S can be extended to a basis of V.

Corollary 9
Let V' be a finite-dimensional vector space over F' and W C V a subspace,
then W is a finite dimensional vector space over F' and dim W < dim V/,

with equality holding if and only if V = W.

Theorem 10 (Counting Theorem)
Let V be a vector space over F', Wi, Wy C V be finite-dimensional subspaces.
Then,

1. Wy N Wy is a finite-dimensional vector space.

2. Wy + W5 is a finite-dimensional vector space.



3. dim Wy + dim Wy = dim (W + Wa) + dim (W N Wh).

Proof. (1, 2): Let %; be a basis for W;, i € {1,2}. Then | %, U Ba| < |B1| +
|B2| < 0.

Hence, Span(%; U %5) is a finite-dimensional vector space by the Toss-Out
Theorem. Also, Span(%; U%Bs) = W1+ Wa, so Wi + W is a finite-dimensional
vector space.

(3): Let B = {v1,...,v,} be a basis for W; N W,. By the Extension
Theorem, this extends to bases

G ={vi,. ., Un, Y1, Ym}
for W7 and
G ={v1,. ., Un, 21,y Zm}
for W.
Claim 10.1. € = {v1, ..., Un, Y1, -+, Ym, 21, - - -, Zr } 18 & basis for Wy + Ws.
Remark 11. If we show this claim, we’re done.
Proof of claim. (€ spans Wy + W5): This is true, since Wy + Wy = Span(%6; U
%>) = Span(%).

(% linearly independent): For the sake of contradiction, assume it isn’t. Then

there exist oy, 8;,7; € F, not all zero, such that
QU1 +--~+anvn+ﬂlyl+---+ﬂmym+71zl + .oz =0

Case I (v; = 0 Vi). This can’t be true, since it would contradict the linear
independence of Cf.

Case IT (3¢ 3 v; # 0): Without loss of generality, we can say that v; # 0.
Note that

0#z=m21+...+ 72 € Span(%) = Wy (1)
but also
2= =11 — ... — QpUp — B1Y1 — .. — BmYm (2)
Setting (1) and (2) equal to each other, we get
Y121+ ot Y2 =2 = —Q1U] — oo — QU — B1Y1 — - - — BmYm

Hence 361,...,0, 2 (0#) z = 6101 + ... + 0pUn.
Thus, we get that

01+ ...+ 0, +0-214+...4+0- 2z, =121+ ...+ Yz #£0



But v; # 0, so by the Cot6rdinate Theorem we get a contradiction, because
%5 is a basis! O

O

Corollary 12

If V is a finite-dimensional vector space over F, Wi,Ws C V finite-
dimensional subspaces such that W7 N Wy = 0, then dim (W; + W) =
dim Wy + dim Ws.

Theorem 13 (Dimension Theorem)
Let T': V — W be linear with V a finite-dimensional vector space over F'.
Then

1. kerT C V and im T' C W are finite-dimensional subspaces.

2. dimV =dimkerT + dimim 7.

Proof. Let n =dimV.
We have kerT C V and im T C W are subspaces. In particular, kerT'C V'

is a finite-dimensional subspace. Let By = {v1,...,vn} be a basis for ker T'.
Extend %, to & = {v1,...,v,}, a basis for V, using the Extension Theo-
rem. It suffices to show that ¢ = {Tv;11,...,Tv,} is a basis for im T°. So,

let’s show it!
(¢ spans im T'): Let w € im T, and v € V satisfy Tv = w. As £ is a basis

for V, v =aiv1 + ...+ ayv, for some «; € F. Thus,
w="Tv
=aTvy + ...+ o Tvy + 1T + ... + T,
=a;-0+... 4+ m 0+ ami1TVms1 + ... + @, Tu, € Span(%)
(€ is linearly independent): Observe that
1T V41 + ...+ T, =0

fora; € F,i>m—+1.
By linearity,

T(0y) = T(mt1TVmy1 + .. + 0 T0n) = O

5Why? Make sure you understand this.



SO0 A1 TVmy1 + ...+ apyTo, € kerT. As % is a basis for kerp, we know
that

Am+1Um+1 + ..+ QpUy = 61”1 +...+ ﬂmvm
for some 3; € F. Thus,
—B1v1 — ... — BmVm + Qg 1Vmy1 + .+ vy =0

Since 4 is linearly independent, 5; = o; = 0 Vi, j. O

Theorem 14 (Monomorphism Theorem)
Let T : V. — W be linear. Then the following are equivalent:

1. T is a monomorphism (i.e., T' is one-to-one),
2. T takes linearly independent sets to linearly independent sets,
3. kerT =0,

4. dimkerT = 0.

Proof. (1 = 2): To show 2, it suffices to show T takes finitely many distinct
linearly independent elements to linearly independent elements. Let vq,...,v,
in V be linearly independent, aj,...,a, € F. Since T is one-to-one and
linear, O = T(0y) = 0 = ajv1 + ... + a,v,. By linearity, it follows
that aqTv1 + ... + a,Tv, = Ow, so a; = 0 Vi, since {v1,...,v,} are linearly
independent.

(2 = 3): Let v eV, with v € kerT, so T'(v) = O = T(0y).

If v # 0, {v} is linearly independent, as av =0 = « = Owhen v # 0. So
T(v) # 0 by (2). Thus, ker T must equal 0.

(3 <= 4): By definition.

(3 = 1) : SupposeT(v1) = T(v2), for some vy1,v2 € V. So 0 = T(v; —
T(ve) =T(v1 —v2) = v1 —ve €EkerT = v; = va. O

This theorem states that ker T is the obstruction of T being a monomor-

phism.



Recall that W = W means only that 37 : V — W an isomorphism, not
that all linear S : V — W are isomorphisms.

Theorem 17 (Isomorphism Theorem)
Suppose T : V. — W with V, W finite-dimensional vector spaces of the
same dimension over F; ie., dimV =dim W < oco.

Then, the following are equivalent:

1. T is an isomorphism,
2. T is a monomorphism,
3. T is an epimorphism,

4. It B = {v1,...,v,} is a basis for V, then {Tv;,...,Tv,} is a basis
for W3 i.e., T takes bases of V to bases of W,

5. 3 a basis for V such that T takes it to a basis for W.

dimV =dim W < oo is a very, very, very, very, very strong condition!

Proof. (1 = 2): v

(2 <= 3): By the Dimension Theorem, dim W = dimV = dimkerT +
dimim T < oo.

T is onto means that W = imT <= dimim7T =dmW <= kerT =
0 <= T is one-to-one®.

(2and 3 = 1): v

(2 = 4): By the Monomorphism Theorem, {Tvy,...,Tv,} is linearly
independent where n = dim W, so it is a basis since it spans (by the Extension

Theorem, or the Main Theorem, or whatever you want, really.)

4 = 5):V
(5 = 3): f B={v1,...,v,}is a basis, {Tvy,...,Tv,} is a basis. Hence,
it spans. Thus, T is onto and therefore an epimorphism. O

6We used the corollary to the Extension Theorem in the second if and only if.



