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Theorem 1 (Replacement Theorem)
Let V be a finite-dimensional vector space over F with basis B = {v1, . . . , vn}.
Let v ∈ V , with v = α1v1 + . . .+ αnvn, αi ∈ F where some αi is nonzero.
Then {v1, . . . , vi−1, v, vi+1, . . . , vn} is a basis for V .

Proof. By change of notation, we may assume that α1 6= 01. Thus, α−1
1 exists2.

Thus,

v = α1v1 + . . .+ αnvn =⇒

v1 = α−1
1 v − α−1

1 α2v2 − . . .− α−1
1 αnvn ∈ Span(v, v2, . . . , vn)

By the Important Exercise, we have Span(v1, . . . , vn) = Span(v, v1, . . . , vn) =
Span(v, v2, . . . , vn), i.e., {v, v2, . . . , vn} spans V .

Suffices to show that {v, v2, . . . , vn} is linearly independent3. For the sake of
contradiction, assume the set isn’t linearly independent. Then, ∃β1, . . . , βn not
all zero such that

βv + β2v2 + . . .+ βnvn = 0

Case I (β = 0): Then 0 = β2v2 + . . . + βnvn with not all βi = 0, i.e.,
{v2, . . . , vn} is linearly dependent, hence B is linearly dependent. This is a
contradiction!

Case II (β 6= 0): Since β 6= 0, β−1 is alive and kicking. So,

v = −β−1β2v2 − . . .− β−1βnvn

1All this means is that since some ai is nonzero, we can, without loss of generality, assume
it’s the first one.

2Because it’s a nonzero element of a field F .
3We’ve already shown that it spans, so this is the only remaining condition for it to be a

basis.
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= 0 · v1 − β−1β2v2 − . . .− β−1βnvn

Recall from above that

v = α1v1 + . . .+ αnvn

Setting these two things equal to each other, we get

α1v1 + . . .+ αnvn = 0 = 0 · v1 − β−1β2v2 − . . .− β−1βnvn

However, by the Coördinate Theorem, in a basis, coördinates are unique!
But we said at the beginning that α1 6= 0, so this is a contradiction4. got ’em!

Note 2
On an intuitive level, the reason we split the proof into two cases is because
we always want β to have an inverse. For that to happen, we quickly show
that the case where it doesn’t have an inverse (i.e., equals zero) doesn’t
work.

More concisely,

Note 3
If it’s non-zero, then it has an inverse, so divide by it.

Theorem 4 (Main Theorem)
Suppose V is a finite-dimensional vector space over F , and V = Span(v1, . . . , vn).
Then any linearly independent subset in V has at most n elements; i.e., if
S is a linearly independent subset, |S| ≤ n.

Proof. By the Toss-Out Theorem, {v1, . . . , vn} is a basis. In particular, we
may assume {v1, . . . , vn} is a basis to show |S| ≤ n.

Suffices to show that if S = {w1, . . . , wm} is linearly independent in V , then
m ≤ n. Assume m < n.

Claim 4.1. After changes of notation (on the vi’s) if necessary, then for each
k < n, {w1, . . . , wk, vk+1, . . . , vn} is linearly independent.

4Right? cause α1v1 = 0 · v1 by the Coordinate theorem, but we said that α1 6= 0.



4

Clearly, the claim implies the proof of the theorem. To see why, ap-
ply the claim to n = k. Then, {w1, . . . , wn} is a basis. Then, wn+1 ∈
Span(w1, . . . , wn) = V , so {w1, . . . , wn+1} is linearly dependent. Thus, proving
the claim will show the theorem.

Proof of claim. We prove this by induction ok k.
Let k = 1. Then 0 6= w1 ∈ Span(v1, v2, . . . , vn).
0 6= w1 = α1v1 + . . . + αnvn, not all αi = 0. After changing notation, we

can assume that α1 6= 0, so {w1, v2, . . . , vn} is a basis by the Replacement
Theorem (1).

Inductive step: Assume that for some k, k < n, {w1, . . . , wk, vk+1, . . . , vn}
is a basis. We want to show that {w1, . . . , wk+1, vk+2, . . . , vn} is a basis (up to
changing notation). We have that 0 6= wk+1 = α1w1 + . . .+ αkwk + βk+1vk+1 +
. . .+ βnvn, where αi, βi ∈ F are not all zero.

Case I (βi = 0 ∀i): Then wk+1 ∈ Span(w1, . . . , wk), contradicting the linear
independence of the set {w1, . . . , wm}.

Case II (∃βj 6= 0): Changing notation, we may assume that βk+1 6= 0. Hence,
{w1, . . . , wk+1, vk+2, . . . , vn} is a basis by the Replacement Theorem (1).

Corollary 5
Let V be a finite-dimensional vector space over F with bases B1, B2. Then
|B1| = |B2|. We call |B1| the dimension of V and write dimF V or dimV .

Proof. By definition, there exists a basis C for V such that |C | < ∞. If B is
another basis, then |B| ≤ |C | by the Main Theorem (4). Also, |C | ≤ |B|.
Thus, |B| = |C |.

Corollary 6
Let V be a finite-dimensional vector space over F of dimension n > 0, and
0 6= S ⊂ V a subset. Then

a) If |S| > n, then S is linearly dependent.

b) If |S| < n, then S does not span V .
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Proof. The theorem tells us that the maximal linearly independent set in V is a
basis. By the Toss-Out Theorem, a minimal spanning set of V is a basis.

Theorem 7 (Extension Theorem)
Let V be a finite-dimensional vector space over F , and suppose W ⊂ V is
a subspace. Suppose S ⊂ W is a linearly independent subset. Then S is
finite, and part of a basis for W .

Proof. We have |S| ≤ dimV < ∞ by the Main Theorem. If W = Span(S),
W is a basis by definition, so we’re done. If not, ∃w1 ∈ W \ Span(S). By the
Toss-In Theorem, ∃w1 ∈W such that S ∪ {w1} is linearly independent. Call
this set S1 := S ∪ {w1}.

Clearly, |S1| = |S|+ 1 since we just added another vector, and Span(S) <
Span(S1).

If Span(S1) < W , then ∃w2 ∈ W 3 S2 = S1 ∪ {w2}is linearly independent,
by the Toss-In Theorem. |S2| = |S|+ 2.

Continue tossing in linearly independent vectors and, since W is finite,
eventually Span(Sn) = W .

Corollary 8
Let V be a finite-dimensional vector space over F , and S ⊂ V a linearly
independent set. Then S can be extended to a basis of V .

Corollary 9
Let V be a finite-dimensional vector space over F and W ⊂ V a subspace,
then W is a finite dimensional vector space over F and dimW ≤ dimV ,
with equality holding if and only if V = W .

Theorem 10 (Counting Theorem)
Let V be a vector space over F ,W1,W2 ⊂ V be finite-dimensional subspaces.
Then,

1. W1 ∩W2 is a finite-dimensional vector space.

2. W1 +W2 is a finite-dimensional vector space.
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3. dimW1 + dimW2 = dim (W1 +W2) + dim (W1 ∩W2).

Proof. (1, 2): Let Bi be a basis for Wi, i ∈ {1, 2}. Then |B1 ∪B2| ≤ |B1| +
|B2| <∞.

Hence, Span(B1 ∪B2) is a finite-dimensional vector space by the Toss-Out
Theorem. Also, Span(B1∪B2) = W1 +W2, so W1 +W2 is a finite-dimensional
vector space.

(3): Let B = {v1, . . . , vn} be a basis for W1 ∩ W2. By the Extension
Theorem, this extends to bases

C1 = {v1, . . . , vn, y1, . . . , ym}

for W1 and

C2 = {v1, . . . , vn, z1, . . . , zm}

for W2.

Claim 10.1. C = {v1, . . . , vn, y1, . . . , ym, z1, . . . , zr} is a basis for W1 +W2.

Remark 11. If we show this claim, we’re done.

Proof of claim. (C spans W1 +W2): This is true, since W1 +W2 = Span(C1 ∪
C2) = Span(C ).

(C linearly independent): For the sake of contradiction, assume it isn’t. Then
there exist αi, βi, γi ∈ F , not all zero, such that

α1v1 + . . .+ αnvn + β1y1 + . . .+ βmym + γ1z1 + . . .+ γrzr = 0

Case I (γi = 0 ∀i). This can’t be true, since it would contradict the linear
independence of C1.

Case II (∃i 3 γi 6= 0): Without loss of generality, we can say that γ1 6= 0.
Note that

0 6= z = γ1z1 + . . .+ γrzr ∈ Span(C2) = W2 (1)

but also

z = −α1v1 − . . .− αnvn − β1y1 − . . .− βmym (2)

Setting (1) and (2) equal to each other, we get

γ1z1 + . . .+ γrzr = z = −α1v1 − . . .− αnvn − β1y1 − . . .− βmym

Hence ∃δ1, . . . , δn 3 (0 6=) z = δ1v1 + . . .+ δnvn.
Thus, we get that

δ1v1 + . . .+ δnvn + 0 · z1 + . . .+ 0 · zr = γ1z1 + . . .+ γrzr 6= 0
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But γ1 6= 0, so by the Coördinate Theorem we get a contradiction, because
C2 is a basis!

Corollary 12
If V is a finite-dimensional vector space over F , W1,W2 ⊂ V finite-
dimensional subspaces such that W1 ∩ W2 = 0, then dim (W1 +W2) =
dimW1 + dimW2.

Theorem 13 (Dimension Theorem)
Let T : V −→W be linear with V a finite-dimensional vector space over F .
Then

1. kerT ⊂ V and im T ⊂W are finite-dimensional subspaces.

2. dimV = dim kerT + dim im T .

Proof. Let n = dimV .
We have kerT ⊂ V and im T ⊂W are subspaces. In particular, kerT ⊂ V

is a finite-dimensional subspace. Let B0 = {v1, . . . , vm} be a basis for kerT .
Extend B0 to B = {v1, . . . , vn}, a basis for V , using the Extension Theo-

rem. It suffices to show that C = {Tvm+1, . . . , T vn} is a basis for im T 5. So,
let’s show it!

(C spans im T ): Let w ∈ im T , and v ∈ V satisfy Tv = w. As B is a basis
for V , v = α1v1 + . . .+ αnvn for some αi ∈ F . Thus,

w = Tv

= α1Tv1 + . . .+ αmTvm + αm+1Tvm+1 + . . .+ αnTvn

= α1 · 0 + . . .+ αm · 0 + αm+1Tvm+1 + . . .+ αnTvn ∈ Span(C )

(C is linearly independent): Observe that

αm+1Tvm+1 + . . .+ αnTvn = 0

for αi ∈ F , i > m+ 1.
By linearity,

T (0V ) = T (αm+1Tvm+1 + . . .+ αnTvn) = 0W

5Why? Make sure you understand this.
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so αm+1Tvm+1 + . . .+ αnTvn ∈ kerT . As B0 is a basis for kerT , we know
that

αm+1vm+1 + . . .+ αnvn = β1v1 + . . .+ βmvm

for some βi ∈ F . Thus,

−β1v1 − . . .− βmvm + αm+1vm+1 + . . .+ αnvn = 0

Since B is linearly independent, βj = αi = 0 ∀i, j.

Theorem 14 (Monomorphism Theorem)
Let T : V −→W be linear. Then the following are equivalent:

1. T is a monomorphism (i.e., T is one-to-one),

2. T takes linearly independent sets to linearly independent sets,

3. kerT = 0,

4. dim kerT = 0.

Proof. (1 =⇒ 2): To show 2, it suffices to show T takes finitely many distinct
linearly independent elements to linearly independent elements. Let v1, . . . , vn

in V be linearly independent, α1, . . . , αn ∈ F . Since T is one-to-one and
linear, 0W = T (0V ) =⇒ 0 = α1v1 + . . . + αnvn. By linearity, it follows
that α1Tv1 + . . . + αnTvn = 0W , so αi = 0 ∀i, since {v1, . . . , vn} are linearly
independent.

(2 =⇒ 3): Let v ∈ V , with v ∈ kerT , so T (v) = 0W = T (0V ).
If v 6= 0, {v} is linearly independent, as αv = 0 =⇒ α = 0when v 6= 0. So

T (v) 6= 0 by (2). Thus, kerT must equal 0.
(3 ⇐⇒ 4): By definition.
(3 =⇒ 1) : SupposeT(v1) = T (v2), for some v1, v2 ∈ V . So 0 = T (v1 −

T (v2) = T (v1 − v2) =⇒ v1 − v2 ∈ kerT =⇒ v1 = v2.

Note 15
This theorem states that kerT is the obstruction of T being a monomor-
phism.
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Note 16
Recall that W ∼= W means only that ∃T : V −→W an isomorphism, not
that all linear S : V −→W are isomorphisms.

Theorem 17 (Isomorphism Theorem)
Suppose T : V −→ W with V,W finite-dimensional vector spaces of the
same dimension over F ; i.e., dimV = dimW <∞.

Then, the following are equivalent:

1. T is an isomorphism,

2. T is a monomorphism,

3. T is an epimorphism,

4. If B = {v1, . . . , vn} is a basis for V , then {Tv1, . . . , T vn} is a basis
for W ; i.e., T takes bases of V to bases of W ,

5. ∃ a basis for V such that T takes it to a basis for W .

Note 18
dimV = dimW <∞ is a very, very, very, very, very strong condition!

Proof. (1 =⇒ 2): X
(2 ⇐⇒ 3): By the Dimension Theorem, dimW = dimV = dim kerT +

dim im T <∞.
T is onto means that W = im T ⇐⇒ dim im T = dimW ⇐⇒ kerT =

0 ⇐⇒ T is one-to-one6.
(2 and 3 =⇒ 1): X
(2 =⇒ 4): By the Monomorphism Theorem, {Tv1, . . . , T vn} is linearly

independent where n = dimW , so it is a basis since it spans (by the Extension
Theorem, or the Main Theorem, or whatever you want, really.)

(4 =⇒ 5): X
(5 =⇒ 3): If B = {v1, . . . , vn} is a basis, {Tv1, . . . , T vn} is a basis. Hence,

it spans. Thus, T is onto and therefore an epimorphism.

6We used the corollary to the Extension Theorem in the second if and only if.


