Analysis HW \#1

Dyusha Gritsevskiy

January 2019

1 Addition

Problem (2.2.1). Prove the following proposition: for any natural numbers a, b, c, we have $(a+b)+c=a+(b+c)$.

Solution. We induct on c.
Base case ($c=0$):

$$
\begin{align*}
(a+b)+0 & =(a+b) \tag{ByLemma2.2.2}\\
& =a+b \\
& =a+(b+0)
\end{align*}
$$

(By Lemma 2.2.2)

Inductive case: Suppose that $(a+b)+c=a+(b+c)$. We want to show that $(a+b)+c++=a+(b+c++)$. Since $(a+b)$ is a natural number, we can apply Lemma 2.2 .3 to get that $(a+b)+c++=((a+b)+c)++$. By the inductive hypothesis, this is equivalent to $(a+(b+c))++$. By Lemma 2.2.3, this equals $a+(b+c)++$. Thus, $(a+b)+c++=a+(b+c++)$, which closes the induction. So we are done.

Problem (2.2.2). Prove the following lemma: Let a be a positive number. Then there exists exactly one natural number b such that $b++=a$.

Solution. Since we're trying to prove a property of the positive naturals, and not all the naturals, we can start our base case at $n=1$, rather than $n=0^{1}$.

Base case $(n=1)$: Existence: by definition, $0++=1$, and 0 is a natural number.

[^0]Uniqueness: suppose we have two natural numbers a and b, where $a++=1$ and $b++=1$. By Corollary of Lemma 2.2.3, we know that $a++=a+1$ and $b++=b+1$; hence, $a+1=1$ and $b+1=1$. In particular, $a+1=b+1$. By Proposition 2.2.6 (cancellation law), we get that $a=b$. Hence, this natural number is unique.

Inductive step: Suppose that for n, there exists exactly one natural number m such that $m++=n$. We want to show that for $n++$, there exists exactly one natural number p such that $p++=n++$.

Existence: Take $p=n$. Then $p++=n++$ holds.
Uniqueness: Suppose there exist two numbers, a and b, such that $a++=n++$ and $b++=n++$. Then by transitivity, $a++=b++$. By the Corollary to Lemma 2.2.3, we get that $a++=a+1$ and $b++=b+1$, so $a+1=b+1$. By the cancellation law, $a=b$, so $p=a=b$ is a unique choice ${ }^{2}$.

Problem (2.2.3). Prove Proposition 2.2.12; i.e., the following properties about order, given natural numbers a, b, c :
(a) (Order is reflexive): $a \geq a$.
(b) (Order is transitive): If $a \geq b$ and $b \geq c$, then $a \geq c$.
(c) (Order is anti-symmetric): If $a \geq b$ and $b \geq a$, then $a=b$.
(d) (Addition preserves order): $a \geq b$ if and only if $a+c \geq b+c$.
(e) $a<b \Longleftrightarrow a++\leq b$.
(f) $a<b \Longleftrightarrow b=a+d$ for some positive number d.

Solution. (a). By the definition of addition, $0+a=a$. Since addition is commutative, $0+a=a+0$; hence, $a+0=a$. By the definition of an order, $a+0 \geq a$. But since $a+0=a$, by Lemma 2.2.2 we get that $a \geq a$.
(b). By the definition of order, $a=b+d$ for some natural number d, and $b=c+e$ for some natural number e. Hence, $a+b=(b+d)+(c+e)$. By the associativity of addition, $(b+d)+(c+e)=b+(d+(c+e))$. Hence, $a+b=b+(d+(c+e))$. By the commutativity of addition, $a+b=b+a$; hence, $b+a=b+(d+(c+e))$. Since $(d+(c+e))$ is a natural number, we can use the cancellation law to get $a=(d+(c+e))=d+(c+e)$. From here we get that

$$
\begin{align*}
a & =d+(c+e) \\
& =(d+c)+e \tag{Bycommutativity}\\
& =(c+d)+e
\end{align*}
$$

$$
=(d+c)+e \quad \text { (By associativity) }
$$

[^1]$$
=c+(d+e)
$$
(By associativity)
Since $d+e$ is a natural number and $a=c+(d+e)$, by the definition of order, we have that $a \geq c$.
(c). By the definition of order, $a=b+c$ for some natural number c and $b=a+d$ for some natural number d. By substituting the expanded value of b, we get that $a=(a+d)+c$, which, by associativity, equals $a+(d+c)$. Hence, $a=a+(d+c)$. By Lemma 2.2.2, $a+0=a+(d+c)$. By the cancellation law, $0=d+c$, and by Corollary 2.2.9, $d=0$ and $c=0$. Hence, $a=b+0$, so by Lemma 2.2.2, $a=b$.
(d). (\Longrightarrow) : We prove this using induction on c.

Base case: we want to prove that if $a \geq b$, then $a+0 \geq b+0$. By Lemma 2.2.2, the second statement is equivalent to $a \geq b$, which follows from the assumption trivially.

Inductive step: Suppose that $a \geq b$, and that $a \geq b \Longrightarrow a+c \geq b+c$. We want to show that $a+c++\geq b+c++$. We do this as follows:

$$
\begin{aligned}
& a+c++\geq b+c++\Longleftrightarrow \\
& a+c++=(b+c++)+r \Longleftrightarrow \\
& \text { (By definition of order) } \\
& a+(c+1)=(b+c++)+r \Longleftrightarrow \quad \text { (By Corollary to Lemma 2.2.3) } \\
& a+(c+1)=b+(c+++r) \Longleftrightarrow \\
& \text { (By associativity) } \\
& a+(c+1)=b+(r+c++) \Longleftrightarrow \\
& \text { (By commutativity) } \\
& (a+c)+1=(b+r)+c++\Longleftrightarrow \\
& (a+c)+1=(b+r)+(c+1) \Longleftrightarrow \\
& \text { (By Corollary to Lemma 2.2.3) } \\
& (a+c)+1=((b+r)+c)+1 \Longleftrightarrow \\
& (a+c)=((b+r)+c) \Longleftrightarrow \\
& a+c=b+(r+c) \Longleftrightarrow \\
& \text { (By associativity) } \\
& a+c=b+(c+r) \Longleftrightarrow \\
& \text { (By commutativity) } \\
& a+c=(b+c)+r \Longleftrightarrow \\
& \text { (By associativity) } \\
& a+c \geq b+c \\
& \text { (By definition of order) }
\end{aligned}
$$

Thus, $a+c \geq b+c \Longrightarrow a+c++\geq b+c++$, but we supposed that $a \geq b$, and by the inductive hypothesis, $a \geq b \Longrightarrow a+c \geq b+c$, so $a+c++\geq b+c++$. This closes the induction, and we are done.
(\Longleftarrow) : This part is easy, and done as follows:

$$
a+c \geq b+c \Longrightarrow
$$

$$
\begin{array}{rlr}
a+c & =(b+c)+r \Longrightarrow & \text { (By the definition of order) } \\
a+c & =b+(c+r) \Longrightarrow & \text { (By associativity) } \\
a+c & =b+(r+c) \Longrightarrow & \text { (By commutativity) } \\
a+c & =(b+r)+c \Longrightarrow & \text { (By associativity) } \\
a & =b+r \Longrightarrow & \text { (By cancellation) } \\
a & \geq b & \text { (By definition of order) }
\end{array}
$$

(e). (\Longrightarrow): Suppose that $a<b$. Then by definition, $b=a+c$ for some natural number c and $a \neq b$.

Claim 0.1. $c \neq 0$.
Proof. Suppose $c=0$. Then, we have that $a+0=b$. By Lemma 2.2.2, we get that $a=b$, a contradiction.

Claim 0.2. $c \geq 1$.
Proof. Essentially, what we want to show is that any positive number can be written in the form $1+d$. Let's do this by inducting on c, an (arbitrary) positive integer.

Base case $(c=1)$: Set $d=0$. In this case, $c=1=1+0=1+d$ by Lemma 2.2.2.

Inductive step: Suppose $c=1+d$ for some number d. Then $c++=(1+d)++$ by injectivity of the successor function. By commutativity, the right-hand side equals $(d+1)++$, which by the definition of addition equals $d+++1$. Hence, by commutativity, we get that $c++=1+d++$, which closes the induction.

Since $c \geq 1$, we can write c as $1+r$, for some natural number r. By plugging this representation of c into $b=a+c$, we get that $b=a+(1+r)$; by associativity, $b=(a+1)+r$; by Corollary to Lemma 2.2.3, $b=(a++)+r$; by definition of order, $a++\leq b$.
(\Longleftarrow) : Suppose that $a++\leq b$. By Corollary to Lemma 2.2.3, $a+1 \leq b$. By definition of order, $a \leq b$. Thus, by definition of $<$, it suffices to show that $a \neq b$. To do this, suppose that $a=b$. Since we know that $a+1 \leq b$, we can substitute in the value for a to get $b+1 \leq b$. By definition of order, this means that $b=(b+1)+r$ for some natural number r. By associativity, we get $b=b+(1+r)$; by cancellation, we get that $0=1+r$. By commutativity, $0=r+1$. By Corollary to Lemma 2.2.3, we get that $0=r++$; hence, it
is a successor of a natural number. But this is a contradiction of Axiom 2.3; hence, our assumption was false, so $a \neq b$, so we are done.
(f). (\Longrightarrow): From (e), we know that $a<b \Longrightarrow a++\leq b$. Hence, $b=(a++)+r$ by definition of order. By the Corollary to Lemma 2.2.3, $b=(a+1)+r$, which by associativity equals $a+(1+r)$. Set $d=1+r$. Clearly, d is positive, since by commutativity and the Corollary to Lemma 2.2.3, $d=r++$, so by Axiom 2.3, $d \neq 0$. Also, $b=a+d$ by substitution, so we are done.
($\Longleftarrow)$: Suppose that $b=a+d$ for some positive number d. We proved in (e) that a positive number must be ≥ 1; hence, $d=1+r$ by definition of order. By commutativity, $d=r+1$; by the Corollary to Lemma 2.2.3, $d=r++$. Substituting this in, we get $b=a+r++$, which by commutativity equals $(r++)+a$, which by the definition of addition, case II, equals $(r+a)++$. Since $b=(r+a)++$ and $(r+a)+++0=(r+a)++$ by Lemma 2.2.2, we get that $b=(r+a)+++0$. By the definition of order, this means that $b \geq(r+a)++$. By (e), this implies that $b>r+a$.

Problem (2.2.5). Prove proposition 2.2.14: Let m_{0} be a natural number, and let $P(m)$ be a property pertaining to an arbitrary natural number m. Suppose that for each $m \geq m_{0}$, we have the following implication: if $P\left(m^{\prime}\right)$ is true for all natural numbers $m_{0} \leq m^{\prime}<m$, then $P(m)$ is also true. (In particular, this means that $P\left(m_{0}\right)$ is true, since in this case the hypothesis is vacuous.) Then we can conclude that $P(m)$ is true for all natural numbers $m \geq m_{0}$.

Solution. Following the hint, we define $Q(n)$ to be the property that $P(m)$ is true for all $m_{0} \leq m<n$. We prove the statement by inducting on n.

Base case $(n=0)$: No such $m<0$ exist, so $Q(0)$ is vacuously true.
Inductive step: suppose $Q(n)$ is true - that is, $P(m)$ is true for all $m_{0} \leq m<$ n. But since $P(m)$ is true for all $m_{0} \leq m<n, P(n)$ is true by the assumption in the problem statement. Hence, $P(m)$ is true for all $m_{0} \leq m \leq n$; by properties of order, this is equivalent to $P(m)$ being true for all $m_{0} \leq m<n+1$; in other words, $Q(n+1)$ is true, which closes the induction.

Problem (2.2.6). Prove the property of backwards induction.
Solution. We show this by induction on n.

Base case $(n=0)$: Suppose that $P(0)$ is true. We want to show that $P(m)$ is true for all $m \leq 0$. The only m that fits this description is $m=0^{3}$. But $P(m)$ is true by assumption.

Inductive step: suppose that if $P(n)$ is true, then $P(m)$ is true for all natural numbers $m \leq n$. It suffices to show that if $P(n++)$ is true, then $P(m)$ is true for all natural numbers $m \leq n++$. But by the given property of the statement P, if $P(n++)$ is true, then $P(n)$ must be true as well. By the inductive hypothesis, $P(m)$ is true for all natural numbers $m \leq n$. But by assumption it's also true for $n++$. Hence, $P(m)$ is true for all natural numbers $m \leq n++$, which closes the induction.

2 Multiplication

Before we begin doing the problems in the multiplication section, it will be helpful to prove a couple of lemmas that we'll use later on ${ }^{4}$.

Lemma 1

Let m be a natural number. Then, $m \times 0=0$.

Proof. We do this by induction on m.
Base case $(m=0): 0 \times 0=0$ by the definition of multiplication, case I.
Inductive step: suppose that $m \times 0=0$. We want to show that $m++\times 0=0$.
By the definition of multiplication, case II, we know that $m++\times 0=(m \times 0)+0=$ $0+0=0$, using the inductive hypothesis at the second equality.

Lemma 2

Let m be a natural number. Then $0 \times m=m \times 0$.

Proof. We prove this by induction.
Base case $(m=0)$: By definition, $0 \times m=0$. By Lemma 1, $m \times 0=0$. Hence, $0 \times m=m \times 0$.

Inductive step: suppose that $0 \times m=m \times 0$. We want to show that $0 \times m++=m++\times 0$. The left-hand side, by the definition of multiplication, case I, equals 0 . The right-hand side, by the definition of multiplication, case II,

[^2]equals $(m \times 0)+0=0+0=0$ by Lemma 1. Hence, $0 \times m++=m++\times 0$, which closes the induction.

Lemma 3

Let m, n be natural numbers. Then $m \times n++=m \times n+m$.

Proof. We prove this by induction on m.
Base case $(m=0)$: we want to show that $0 \times n++=0 \times n+0$. The left-hand side is 0 by the definition of multiplication, case II. The right-hand side is $0+0$, by the definition of multiplication, which also equals 0 .

Inductive step: suppose that $m \times n++=m \times n+m$. We want to show that $m++\times n++=m++\times n+m++$.

First, let's simplify the left-hand side:

$$
\begin{aligned}
(m++) \times(n++) & =(m \times n++)+(n++) & & (\text { By def. of multiplication) } \\
& =m \times n+m+n++\quad & & (\text { By def. of multiplication })
\end{aligned}
$$

Now, let's simplify the right-hand side:

$$
\begin{aligned}
(m++) \times n+(m++) & =(m \times n)+n+m++ \\
& =m \times n+n+m++\quad(\text { By def. of multiplication }) \\
& =m \times n+n+m+1 \quad(\text { By Cor. to Lemma 2.2.3) } \\
& =m \times n+m+n+1
\end{aligned}
$$

(By commutativity of addition)

$$
=m \times n+m+n++(\text { By Cor. to Lemma 2.2.3 })
$$

Haha, now the left-hand side and the right-hand side are equal, which closes the induction.

Problem (2.3.1). Let m, n be natural numbers. Then $n \times m=m \times n$.
Proof. We prove this by induction on n.
Base case $(n=0): 0 \times m=m \times 0$ is true by Lemma 2.
Inductive step: suppose that $n \times m=m \times n$. We want to show that $n++\times m=m \times n++$.

By applying the definition of multiplication, case II, to the left-hand side, we get that $n++\times m=(n \times m)+m$. By the inductive hypothesis, this equals $(m \times n)+m$.

Now, let's look at the right-hand side. By Lemma 3, $m \times n++=m \times n+m$. Haha, the two sides are equal, induction closed.

Problem. Prove lemma 2.3.3: Let n, m be natural numbers. Then $n \times m=0$ if and only if at least one of n, m is equal to zero. In particular, if n and m are both positive, then $n m$ is also positive.

Solution. Following Tao's hint, we'll prove the second statement first.
Let n and m be positive natural numbers. We want to show that $n \times m$ is positive. Suffices to show that $n \times m$ is nonzero, by definition of positive. We proved in 2.2.3(e) that if a number is positive, it is greater than or equal to 1 ; that is, $n=1+a$ and $m=1+b$ for some natural numbers a, b. Thus, it suffices to show that $(1+a) \times(1+b) \neq 0$. First of all, we notice the following:

$$
\begin{array}{rlr}
n \times m & =(1+a) \times(1+b) & \\
& =(a+1) \times(b+1) & \text { (By commutativity of addition) } \\
& =a++\times b++ & \text { (By the Corollary to Lemma 2.2.3) } \\
& =(a \times b++)+b++ & (\text { By the definition of multiplication })
\end{array}
$$

To show that this does not equal zero, we proceed by contradiction. Suppose that $n \times m$ does equal zero; in this case, $(a \times b++)+b++=0$ as well. By Corollary 2.2.9, this means that $(a \times b++)=0$, and, more importantly, that $b++=0$. But the latter cannot happen by Axiom 2.3, so $n \times m$ does not equal zero; hence, if n and m are both positive, then $n m$ is positive.

Now, let's actually prove the lemma.
(\Longrightarrow) : This part is pretty easy using the above result. If $n \times m=0$, then $n m$ is not positive. If n and m were both positive, then $n m$ would have been positive. But 0 is not positive; hence, n and m are not both positive; in other words, at least one of n, m is equal to zero.
(\Longleftarrow) : We split this into two cases: $n=0$ and $m=0$. When $n=0$, $n m=0$ by the definition of multplication, case I. When $m=0, n m=0$ by our fortuitously proved Lemma $\mathbf{1}^{5}$.

So we're done.

Lemma 4

For any natural number $c, c \times 1=c$.

[^3]Proof. Induct on c.
Base case $(c=0): c \times 1=0 \times 1=0=c$ by the definition of multiplication, case I.

Inductive step: suppose that $c \times 1=c$. We want to show that $c++\times 1=c++$. We have that

$$
\begin{aligned}
c++\times 1 & =(c+1) \times 1 & (\text { By the Corollary to Lemma 2.2.3) } \\
& =c \times 1+1 \times 1 & \text { (By distributivity) } \\
& =c \times 1+1 & \text { (By the definition of multiplication) } \\
& =c+1 & \text { (By the inductive hypothesis) } \\
& =c++ & \text { (By the Corollary to Lemma 2.2.3) }
\end{aligned}
$$

which closes the induction.
Problem (2.3.3). Prove proposition 2.3.5: for any natural numbers a, b, c, we have $(a \times b) \times c=a \times(b \times c)$.

Solution. This is easy if we induct on c.
Base case $(c=0):(a \times b) \times 0=0$ by Lemma 1; $a \times(b \times 0)=a \times 0=0$ by
Lemma 1; hence, $(a \times b) \times c=a \times(b \times c)$ when $c=0$.
Inductive step: suppose that $(a \times b) \times c=a \times(b \times c)$. We want to show that $a \times(b \times c++)=(a \times b) \times c++$. We do this as follows:

$$
\begin{array}{rlrl}
a \times(b \times c++) & =a \times(c++\times b) & \text { (By commutativity of multiplication) } \\
& =a \times((c \times b)+b) & & \text { (By the definition of multiplication) } \\
& =a \times(c \times b)+a \times b & \text { (By distributivity) } \\
& =a \times(b \times c)+a \times b & (\text { By commutativity of multiplication) } \\
& =(a \times b) \times c+a \times b & \text { (By the inductive hypothesis) } \\
& =(a \times b) \times c+(a \times b) \times 1 & \text { (By Lemma 4) } \\
& =(a \times b) \times(c+1) & \text { (By distributivity) } \\
& =(a \times b) \times c++ & (\text { By the Corollary to Lemma 2.2.3) }
\end{array}
$$

which closes the induction; thus, we are done.
Problem (2.3.4). Prove the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all natural numbers a, b.

Solution. At this point it seems like a grave sin not to use induction, but I claim that we can do it directly ${ }^{6}$. On the left-hand side, we get that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)^{1} \times(a+b) & & \text { (By the definition of exponentiation) } \\
& =\left((a+b)^{0} \times(a+b)\right) \times(a+b) & & \text { (By the definition of exponentiation) } \\
& =(1 \times(a+b)) \times(a+b) & & \text { (By the definition of exponentiation) } \\
& =((a+b) \times 1) \times(a+b) & & \text { (By commutativity of multiplication) } \\
& =(a+b) \times(a+b) & & \text { (By Lemma 4) } \\
& =(a+b) \times a+(a+b) \times b & & \text { (By distributivity) } \\
& =a \times a+b \times a+a \times b+b \times b & & \text { (By distributivity) }
\end{aligned}
$$

On the right-hand side, we get

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & =a^{1} \times a+2 a b+b^{1} \times b \quad(\text { By the definition of exponentiation }) \\
& =\left(a^{0} \times a\right) \times a+2 a b+\left(b^{0} \times b\right) \times b
\end{aligned}
$$

(By the definition of exponentiation)

$$
=(1 \times a) \times a+2 a b+(1 \times b) \times b
$$

(By the definition of exponentiation)
$=(a \times 1) \times a+2 a b+(b \times 1) \times b \quad$ (By commutativity)
$=a \times a+2 a b+b \times b$
$=a \times a+(1+1)(a b)+b \times b$
$=a \times a+a b+a b+b \times b \quad$ (By distributivity)
$=a \times a+b \times a+a \times b+b \times b \quad$ (By commutativity)
They're equal! So we're done.
Problem (2.3.5). Prove proposition 2.3.9: let n be a natural number, and let q be a positive number. Then there exist natural numbers m, r such that $0 \leq r<q$ and $n=m q+r$.

Solution. We will heed Tao's advice and fix q and induct on n.
Base case $(n=0)$: Take $m=0$ and $r=0$. Thus $m q+r=0 \times q+0=0+0=0$, where we used the definition of multplication, case I. All we need to show is that $r<q$. Since q is positive, we proved in exercise 2.2.3(e) that $q \geq 1$. By definition of order, $1 \geq 0$, so by transitivity of order, $q \geq 0$; hence, $q \geq r$. But $q \neq r$,

[^4]for if they were equal, then q would equal zero, and not be positive, which is a contradiction. Hence, $r<q$. But $r=0$ so $r \geq 0$. Thus, $0 \leq r<q$, as desired.

Inductive step: suppose that $n=m q+r$ where $0 \leq r<q$. We want to show that $n++=m^{\prime} q+r^{\prime}$ where $0 \leq r^{\prime}<q$ for some natural numbers m^{\prime}, r^{\prime}. Suppose that $m^{\prime}=m$, and $r^{\prime}=r++$. We have two cases: either $r^{\prime}<q$, or $r++\nless q$. In the first case, we get that $m^{\prime} q+r^{\prime}=m q+r++=r+++m q=(r+m q)++=n++$ and $0 \leq r^{\prime}<q$, so we are done. Thus, we only need to consider the case where $r++\nless q$. By trichotomy of order, this means that $r^{\prime}>q$ or $r^{\prime}=q$. Assume $r^{\prime}>q$; that is, $r^{\prime}=q+a$ and $r^{\prime} \neq q$. By the inductive hypothesis, $r<q$. By Proposition 2.2.12(e), $r++=r^{\prime} \leq q$. By trichotomy of order, this is a contradiction. Hence, we are left with the case where $r^{\prime}=q$. But then, $n++=m^{\prime} q+r^{\prime}=m q+r^{\prime}=m q+q$, which by distributivity equals $q(m+1)$, which by the Corollary to Lemma 2.2.3 and commutativity equals $m++\times q$. Hence, we get that $n++=m++\times q+0$ by Lemma 2.2.2. Hence, we redefine the variables $m^{\prime}=m++$ and $r^{\prime}=0$; we can see that $n++=m^{\prime} \times q+r^{\prime}$ as shown above, and $r^{\prime}=0$ so $0 \leq r^{\prime}<q$ by an argument identical to the one in the base case. So we have shown every case, so we close the induction, and we are done.

3 Bijections

Problem (3).

Solution. Take $c=0_{\text {other }}$ and g be the successor function on $\mathbb{N}_{\text {other }}$, denoted $++_{o t h e r}$. By the principle of recursion, there exists a unique function $f: \mathbb{N} \rightarrow$ $\mathbb{N}_{\text {other }}$ such that $f(0)=0_{\text {other }}$ and $(\forall n) f(n++)=g(f(n))=f(n)++_{\text {other }}$. This f is therefore a bijection since it respects $f(0)=0_{\text {other }}$ and $(\forall n) f(n++)=$ $f(n)++_{\text {other }}$.

[^0]: ${ }^{1}$ Alternatively, we could probably say that our statement $P(n)$ is if n is a positive natural, then there exists exactly one natural number m such that $m++=n$, in which case $P(0)$ would be vacuously true.

[^1]: ${ }^{2}$ We never really used the inductive assumption in this proof-so I guess we never really used the hint in Tao's notes.

[^2]: ${ }^{3}$ True by Corollary 2.2.9 and the definition of order.
 ${ }^{4}$ Granted, in like one problem, but they're helpful anyways!

[^3]: ${ }^{5}$ Hey, I guess we did use the lemmas more than once!

[^4]: ${ }^{6}$ In the following chain of equivalences, we're going to be a bit careless with parentheses since we've already proven associativity of multiplication in Proposition 2.3.5 in the previous exercise - so a couple of times, I might skip an "associativity" step.

