Analysis HW #1

Dyusha Gritsevskiy

January 2019

1 Addition

Problem (2.2.1). Prove the following proposition: for any natural numbers
a,b,c, we have (a +b) +c=a+ (b+c).

Solution. We induct on c.

Base case (¢ = 0):

(a+b)+0=(a+Db) (By Lemma 2.2.2)
=a+b
=a+(b+0) (By Lemma 2.2.2)

Inductive case: Suppose that (a +b) + ¢ =a+ (b+¢). We want to show that
(a+b)+c++=a+ (b+c+ +). Since (a + b) is a natural number, we can
apply Lemma 2.2.3 to get that (a +b) + ¢+ + = ((a + b) + ¢) + +. By the
inductive hypothesis, this is equivalent to (a + (b4 ¢)) + +. By Lemma 2.2.3,
this equals a + (b+¢) + +. Thus, (a+0b)+c++ =a+ (b+ ¢+ +), which closes

the induction. So we are done. O

Problem (2.2.2). Prove the following lemma: Let a be a positive number. Then

there exists exactly one natural number b such that b + + = a.

Solution. Since we're trying to prove a property of the positive naturals, and
not all the naturals, we can start our base case at n = 1, rather than n = 0'.
Base case (n = 1): FEzistence: by definition, 0 + + = 1, and 0 is a natural

number.

! Alternatively, we could probably say that our statement P(n) is if n is a positive natural,
then there exists exactly one natural number m such that m + + = n, in which case P(0)
would be vacuously true.



Uniqueness: suppose we have two natural numbers a and b, where a ++ =1
and b+ + = 1. By Corollary of Lemma 2.2.3, we know that a + + = a + 1
and b++ = b+1; hence, a+1 =1 and b+1 = 1. In particular, a+1 =b+1. By
Proposition 2.2.6 (cancellation law), we get that a = b. Hence, this natural
number is unique.

Inductive step: Suppose that for n, there exists exactly one natural number
m such that m + + = n. We want to show that for n + +, there exists exactly
one natural number p such that p++ =n + +.

FExistence: Take p =n. Then p + + = n + + holds.

Uniqueness: Suppose there exist two numbers, a and b, such that a++ = n++
and b+ + = n + +. Then by transitivity, a + + = b + +. By the Corollary to
Lemma 2.2.3, we get that a++ =a+1land b++=b+1,s0a+1 =0+ 1.

By the cancellation law, a = b, so p = a = b is a unique choice’. O

Problem (2.2.3). Prove Proposition 2.2.12; i.e., the following properties

about order, given natural numbers a, b, c:

(e) a<b < a++ <D
(f) a <b < b= a+d for some positive number d.

(a) (Order is reflexive): a > a.
(b) (Order is transitive): If a > b and b > ¢, then a > c.
(¢) (Order is anti-symmetric): If a > b and b > a, then a = b.
(d) (Addition preserves order): a > b if and only if a +¢ > b+ c.
)
)

Solution. (a). By the definition of addition, 0 + a = a. Since addition is
commutative, 0 + a = a + 0; hence, a + 0 = a. By the definition of an order,
a+ 0 > a. But since a + 0 = a, by Lemma 2.2.2 we get that a > a.

(b). By the definition of order, a = b + d for some natural number d, and
b = ¢+ e for some natural number e. Hence, a +b = (b+ d) + (¢ +¢€). By
the associativity of addition, (b+d) + (c+e¢e) = b+ (d + (¢ + €)). Hence,
a+b=>b+(d+ (c+e)). By the commutativity of addition, a + b = b+ a; hence,
b+a=0b+(d+ (c+e)). Since (d+ (c+e)) is a natural number, we can use the
cancellation law to get a = (d+ (¢ +¢€)) = d+ (¢ + ¢e). From here we get that

a=d+ (c+e)
=(d+c)+e (By associativity)
=(c+d)+e (By commutativity)

2We never really used the inductive assumption in this proof—so I guess we never really
used the hint in Tao’s notes.



=c+ (d+e). (By associativity)

Since d + e is a natural number and a = ¢+ (d + e), by the definition of order,
we have that a > c.

(¢). By the definition of order, a = b + ¢ for some natural number ¢ and
b = a + d for some natural number d. By substituting the expanded value of b,
we get that @ = (a + d) + ¢, which, by associativity, equals a + (d + ¢). Hence,
a=a+ (d+c). By Lemma 2.2.2, a+0 = a+ (d + ¢). By the cancellation law,
0 =d + ¢, and by Corollary 2.2.9, d =0 and ¢ = 0. Hence, a = b+ 0, so by
Lemma 2.2.2, a = b.

(d). (= ): We prove this using induction on c.

Base case: we want to prove that if @ > b, then a +0 > b+ 0. By Lemma
2.2.2, the second statement is equivalent to a > b, which follows from the
assumption trivially.

Inductive step: Suppose that a > b, and that a > b = a+c>b+c. We
want to show that a + ¢+ + > b+ ¢+ +. We do this as follows:

at+c++2>2b+tc++ =
atc++=(0b+c++)+r (By definition of order
a+(c+1)=(b+c++)+r
at+(c+1l)=b+(c+++7)

at+(c+1)=b+(r+c++)

(By Corollary to Lemma 2.2.3
(By associativity

(By commutativity

rrrue

)
)
)
)
(a+c)+1=(0b+r)+c++ (By associativity)
(a+e)+1=0b+r)+(c+1) = (By Corollary to Lemma 2.2.3)
(a+c)+1=(b+r)+c)+1 <= (By associativity)
(a+c)=((b+7r)+c¢) = (By cancellation)
at+c=b+(r+c¢) <= (By associativity)
a+c=b+(c+r) = (By commutativity)
at+c=0b+c)+r < (By associativity)
at+c>b+c (By definition of order)
Thus,a+c>b+c = a+c++ > b+ c+ +, but we supposed that a > b,
and by the inductive hypothesis, a > b = a+c>b+c¢,s0a+c++ > b+c++.
This closes the induction, and we are done.

( <= ): This part is easy, and done as follows:

at+ec>b+c =



at+c=0b+c)+r = (By the definition of order)
a+c=b+(c+r) = (By associativity)
at+c=b+(r+c) = (By commutativity)
at+c=(0b+r)+c = (By associativity)
a=b+r = (By cancellation)
a>b (By definition of order)

(e). (= ): Suppose that a < b. Then by definition, b = a + ¢ for some

natural number ¢ and a # b.

Claim 0.1. ¢ # 0.

Proof. Suppose ¢ = 0. Then, we have that a + 0 = b. By Lemma 2.2.2, we get

that a = b, a contradiction. O
Claim 0.2. ¢ > 1.

Proof. Essentially, what we want to show is that any positive number can be
written in the form 14 d. Let’s do this by inducting on ¢, an (arbitrary) positive
integer.

Base case (¢ =1): Set d = 0. In this case, c=1=140=1+d by Lemma
2.2.2.

Inductive step: Suppose ¢ = 1+d for some number d. Then c++ = (1+d)++
by injectivity of the successor function. By commutativity, the right-hand side
equals (d + 1) 4+ 4, which by the definition of addition equals d + + + 1. Hence,
by commutativity, we get that ¢+ + = 1+ d+ +, which closes the induction. [

Since ¢ > 1, we can write ¢ as 1 + r, for some natural number r. By plugging
this representation of ¢ into b = a+ ¢, we get that b = a+ (1+7); by associativity,
b= (a+1)+r; by Corollary to Lemma 2.2.3, b = (a + +) + r; by definition
of order, a + + < b.

( <= ): Suppose that a++ < b. By Corollary to Lemma 2.2.3, a+1 < b.
By definition of order, a < b. Thus, by definition of <, it suffices to show that
a # b. To do this, suppose that a = b. Since we know that a + 1 < b, we
can substitute in the value for a to get b+ 1 < b. By definition of order, this
means that b = (b+ 1) + r for some natural number r. By associativity, we
get b =0+ (1 + r); by cancellation, we get that 0 = 1 4+ r. By commutativity,
0 =r+ 1. By Corollary to Lemma 2.2.3, we get that 0 = r + +; hence, it



is a successor of a natural number. But this is a contradiction of Axiom 2.3;
hence, our assumption was false, so a # b, so we are done.

(f). ( = ): From (e), we know that a < b = a+ + < b. Hence,
b = (a + +) + r by definition of order. By the Corollary to Lemma 2.2.3,
b= (a+1)+r, which by associativity equals a + (1 +r). Set d =1+ r. Clearly,
d is positive, since by commutativity and the Corollary to Lemma 2.2.3,
d =14+, so by Axiom 2.3, d # 0. Also, b = a + d by substitution, so we are
done.

(<= ): Suppose that b = a + d for some positive number d. We proved in
(e) that a positive number must be > 1; hence, d = 1 4 r by definition of order.
By commutativity, d = r + 1; by the Corollary to Lemma 2.2.3, d =r + +.
Substituting this in, we get b = a 4+ r + +, which by commutativity equals
(r++) + a, which by the definition of addition, case II, equals (r+a)++. Since
b=(r+a)++and (r+a)+++4+0=(r+a)++ by Lemma 2.2.2, we get that
b= (r+a)+ + + 0. By the definition of order, this means that b > (r + a) + +.
By (e), this implies that b > r + a.

O

Problem (2.2.5). Prove proposition 2.2.14: Let mg be a natural number, and
let P(m) be a property pertaining to an arbitrary natural number m. Suppose
that for each m > mg, we have the following implication: if P(m’) is true for
all natural numbers mg < m’ < m, then P(m) is also true. (In particular, this
means that P(mg) is true, since in this case the hypothesis is vacuous.) Then

we can conclude that P(m) is true for all natural numbers m > mg.

Solution. Following the hint, we define Q(n) to be the property that P(m) is
true for all mg < m < n. We prove the statement by inducting on n.
Base case (n = 0): No such m < 0 exist, so Q(0) is vacuously true.
Inductive step: suppose Q(n) is true—that is, P(m) is true for all mg < m <
n. But since P(m) is true for all mg < m < n, P(n) is true by the assumption in
the problem statement. Hence, P(m) is true for all mg < m < n; by properties
of order, this is equivalent to P(m) being true for all mo < m < n + 1; in other

words, @Q(n + 1) is true, which closes the induction. O
Problem (2.2.6). Prove the property of backwards induction.

Solution. We show this by induction on n.



Base case (n = 0): Suppose that P(0) is true. We want to show that P(m)
is true for all m < 0. The only m that fits this description is m = 0°. But P(m)
is true by assumption.

Inductive step: suppose that if P(n) is true, then P(m) is true for all natural
numbers m < n. It suffices to show that if P(n+ +) is true, then P(m) is true for
all natural numbers m < n + 4. But by the given property of the statement P,
if P(n++) is true, then P(n) must be true as well. By the inductive hypothesis,
P(m) is true for all natural numbers m < n. But by assumption it’s also true
for n 4+ +. Hence, P(m) is true for all natural numbers m < n + +, which closes
the induction. O

2 Multiplication

Before we begin doing the problems in the multiplication section, it will be
A

helpful to prove a couple of lemmas that we’ll use later on”.
Lemma 1

Let m be a natural number. Then, m x 0 = 0.

Proof. We do this by induction on m.
Base case (m = 0): 0 x 0 =0 by the definition of multiplication, case I.
Inductive step: suppose that m x 0 = 0. We want to show that m++ x0 = 0.
By the definition of multiplication, case I, we know that m~++x0 = (mx0)+0 =
0 + 0 = 0, using the inductive hypothesis at the second equality. O

Lemma 2

Let m be a natural number. Then 0 x m = m x 0.

Proof. We prove this by induction.

Base case (m = 0): By definition, 0 x m = 0. By Lemma 1, m x 0 = 0.
Hence, 0 x m =m x 0.

Inductive step: suppose that 0 x m = m x 0. We want to show that
0 x m++ =m+ + x 0. The left-hand side, by the definition of multiplication,
case I, equals 0. The right-hand side, by the definition of multiplication, case II,

3True by Corollary 2.2.9 and the definition of order.
4Granted, in like one problem, but they’re helpful anyways!



equals (m x 0)+0=0+0=0 by Lemma 1. Hence, 0 x m++ =m + + x 0,

which closes the induction. O

Lemma 3

Let m,n be natural numbers. Then m X n+ + =m X n + m.

Proof. We prove this by induction on m.

Base case (m = 0): we want to show that 0 x n + + = 0 x n + 0. The
left-hand side is 0 by the definition of multiplication, case II. The right-hand
side is 0 + 0, by the definition of multiplication, which also equals 0.

Inductive step: suppose that m x n++ = m xn+m. We want to show that
m++xXnt++=m++XxXn+m++.

First, let’s simplify the left-hand side:

m++)xn++)=mxn++)+(n++) (By def. of multiplication)
=mxn+m+n++ (By def. of multiplication)
Now, let’s simplify the right-hand side:
(m++)xn+(m++)=(mxn)+n+m++

=mXxXn+n+m++ (By def. of multiplication)
=mxn+n+m+1 (By Cor. to Lemma 2.2.3)

=mxn+m+n+1
(By commutativity of addition)
=mxn+m+n++ (By Cor. to Lemma 2.2.3)

Haha, now the left-hand side and the right-hand side are equal, which closes
the induction. O

Problem (2.3.1). Let m, n be natural numbers. Then n x m =m x n.

Proof. We prove this by induction on n.

Base case (n =0): 0 x m = m x 0 is true by Lemma 2.

Inductive step: suppose that n x m = m x n. We want to show that
n++XxXm=mxn-+ +.

By applying the definition of multiplication, case II, to the left-hand side, we
get that n + 4+ x m = (n x m) + m. By the inductive hypothesis, this equals

(m x n) +m.



Now, let’s look at the right-hand side. By Lemma 3, m xn++ = m xn+m.

Haha, the two sides are equal, induction closed. O

Problem. Prove lemma 2.3.3: Let n, m be natural numbers. Then n x m = 0 if
and only if at least one of n,m is equal to zero. In particular, if n and m are

both positive, then nm is also positive.

Solution. Following Tao’s hint, we’ll prove the second statement first.

Let n and m be positive natural numbers. We want to show that n x m is
positive. Suffices to show that n x m is nonzero, by definition of positive. We
proved in 2.2.3(e) that if a number is positive, it is greater than or equal to 1;
that is, n = 1+ a and m = 1+ b for some natural numbers a, b. Thus, it suffices
to show that (1 +a) x (14 b) # 0. First of all, we notice the following:

nxm=(l+a)x(1+D)

=(a+1)x(b+1) (By commutativity of addition)
=a++xb++ (By the Corollary to Lemma 2.2.3)
=(axb++4+)+b++ (By the definition of multiplication)

To show that this does not equal zero, we proceed by contradiction. Suppose
that n x m does equal zero; in this case, (a x b+ +) + b+ + = 0 as well. By
Corollary 2.2.9, this means that (a x b+ +) = 0, and, more importantly, that
b+ + = 0. But the latter cannot happen by Axiom 2.3, so n X m does not
equal zero; hence, if n and m are both positive, then nm is positive.

Now, let’s actually prove the lemma.

( = ): This part is pretty easy using the above result. If n x m = 0, then
nm is not positive. If n and m were both positive, then nm would have been
positive. But 0 is not positive; hence, n and m are not both positive; in other
words, at least one of n, m is equal to zero.

( < ): We split this into two cases: n = 0 and m = 0. When n = 0,
nm = 0 by the definition of multplication, case I. When m = 0, nm = 0 by our
fortuitously proved Lemma 1°.

So we’re done. O

Lemma4

For any natural number ¢, ¢ X 1 = c.

5Hey, I guess we did use the lemmas more than once!
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Proof. Induct on c.

Base case (¢ =0): ¢ x 1 =0 x 1= 0= ¢ by the definition of multiplication,
case I.

Inductive step: suppose that c¢x1 = ¢. We want to show that c++x1 = c++.
We have that

ct++xl=(c+1)x1 (By the Corollary to Lemma 2.2.3)
=cx1+1x1 (By distributivity)
=cx1+1 (By the definition of multiplication)
=c+1 (By the inductive hypothesis)
=c++ (By the Corollary to Lemma 2.2.3)

which closes the induction. O

Problem (2.3.3). Prove proposition 2.3.5: for any natural numbers a, b, ¢, we

have (a x b) x c=a x (b x ¢).

Solution. This is easy if we induct on c.
Base case (¢ =0): (axb) x0=0by Lemma 1;a x (b x0)=ax0=0 by
Lemma 1; hence, (a x b) X ¢ =a x (b x ¢) when ¢ = 0.
Inductive step: suppose that (a x b) x ¢ = a x (b x ¢). We want to show that
X (bxc++)=(axb) xc++. We do this as follows:

Xx(bxec++)=ax(c++ xb) (By commutativity of multiplication)
=ax ((cxb)+b) (By the definition of multiplication)
=ax(ecxb)+axb (By distributivity)
=ax(bxc)+axb (Bycommutativity of multiplication)

=(axb)xc+axb (By the inductive hypothesis)
=(axb)xc+(axb)x1 (By Lemma 4)
=(axb) x(c+1) (By distributivity)
=(axb) xc++  (By the Corollary to Lemma 2.2.3)
which closes the induction; thus, we are done. O

Problem (2.3.4). Prove the identity (a + b)? = a® + 2ab + b? for all natural

numbers a, b.
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Solution. At this point it seems like a grave sin not to use induction, but I claim
that we can do it directly®. On the left-hand side, we get that

(a+b)*=(a+b) x (a+b) (By the definition of exponentiation)
= ((a+b)"x (a+1b)) x (a+b) (By the definition of exponentiation)
=1 x(a+b) x(a+D) (By the definition of exponentiation)
=((a+b)x1)x (a+Db) (By commutativity of multiplication)
=(a+0b) x (a+b) (By Lemma 4)
=(a+b) xa+ (a+b) xb (By distributivity)
=axa+bxa+axb+bxb (By distributivity)

On the right-hand side, we get
a’> +2ab+b* =a' xa+2ab+b xb (By the definition of exponentiation)
= (a® x a) x a+2ab+ (b° x b) x b
(By the definition of exponentiation)

=(1xa)xa+2ab+(1xb)xb
(By the definition of exponentiation)

=(ax1)xa+2ab+ (bx1)xb (By commutativity)

=axa+2ab+bxb (By Lemma 4)

=axa+ (1+1)(ab)+bxbd

=axa+ab+ab+bxb (By distributivity)

=axa+bxa+axb+bxb (By commutativity)
They’re equal! So we're done. O

Problem (2.3.5). Prove proposition 2.3.9: let n be a natural number, and let g
be a positive number. Then there exist natural numbers m, r such that 0 <r < ¢

and n = mq+ .

Solution. We will heed Tao’s advice and fix ¢ and induct on n.

Base case (n = 0): Take m = 0 and r = 0. Thus mqg+r = 0x¢g+0=04+0=0,
where we used the definition of multplication, case I. All we need to show is that
r < g. Since g is positive, we proved in exercise 2.2.3(e) that ¢ > 1. By definition
of order, 1 > 0, so by transitivity of order, ¢ > 0; hence, ¢ > r. But q # r,

6In the following chain of equivalences, we’re going to be a bit careless with parentheses
since we’ve already proven associativity of multiplication in Proposition 2.3.5 in the previous
exercise—so a couple of times, I might skip an "associativity" step.
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for if they were equal, then ¢ would equal zero, and not be positive, which is a
contradiction. Hence, r < ¢. But r =0 so r > 0. Thus, 0 < r < ¢, as desired.
Inductive step: suppose that n = mgq + r where 0 < r < q. We want to show
that n+-+ = m/q+r’ where 0 < r’ < ¢ for some natural numbers m/, r’. Suppose
that m’ = m, and v’ = r + +. We have two cases: either ' < ¢, or r++ < ¢. In
the first case, we get that m/q+r' = mg+r++ = r+++mq = (r+mq)++ = n++
and 0 < r’ < g, so we are done. Thus, we only need to consider the case where
r 4+ + £ ¢q. By trichotomy of order, this means that ' > ¢ or ' = ¢q. Assume
r’" > ¢; that is, ¥ = ¢+ a and " # ¢. By the inductive hypothesis, r < q.
By Proposition 2.2.12(e), » + + = r’ < ¢. By trichotomy of order, this
is a contradiction. Hence, we are left with the case where r’ = ¢q. But then,
n++ =m'q+ 1" =mqg+ 1" =mq+ q, which by distributivity equals g(m + 1),
which by the Corollary to Lemma 2.2.3 and commutativity equals m + + X q.
Hence, we get that n++ = m++ x ¢+ 0 by Lemma 2.2.2. Hence, we redefine
the variables m’ = m + + and r’ = 0; we can see that n ++ =m' x ¢+ 1’ as
shown above, and " = 0 so 0 < 7’ < ¢ by an argument identical to the one in
the base case. So we have shown every case, so we close the induction, and we

are done. 0

3 Bijections

Problem (3).

Solution. Take ¢ = Ogtner and g be the successor function on Nygper, denoted
++other- By the principle of recursion, there exists a unique function f: N —
Nother such that f(0) = Ogther and (Vn) f(n + +) = g(f(n)) = f(n) + +other-
This f is therefore a bijection since it respects f(0) = Oother and (Vo) f(n++) =
f(n) + +other- O
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