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1 Addition

Problem (2.2.1). Prove the following proposition: for any natural numbers
a, b, c, we have (a + b) + c = a + (b + c).

Solution. We induct on c.
Base case (c = 0):

(a + b) + 0 = (a + b) (By Lemma 2.2.2)

= a + b

= a + (b + 0) (By Lemma 2.2.2)

Inductive case: Suppose that (a + b) + c = a + (b + c). We want to show that
(a + b) + c + + = a + (b + c + +). Since (a + b) is a natural number, we can
apply Lemma 2.2.3 to get that (a + b) + c + + = ((a + b) + c) + +. By the
inductive hypothesis, this is equivalent to (a + (b + c)) + +. By Lemma 2.2.3,
this equals a + (b + c) + +. Thus, (a + b) + c + + = a + (b + c + +), which closes
the induction. So we are done.

Problem (2.2.2). Prove the following lemma: Let a be a positive number. Then
there exists exactly one natural number b such that b + + = a.

Solution. Since we’re trying to prove a property of the positive naturals, and
not all the naturals, we can start our base case at n = 1, rather than n = 01.

Base case (n = 1): Existence: by definition, 0 + + = 1, and 0 is a natural
number.

1Alternatively, we could probably say that our statement P (n) is if n is a positive natural,
then there exists exactly one natural number m such that m + + = n, in which case P (0)
would be vacuously true.
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Uniqueness: suppose we have two natural numbers a and b, where a + + = 1
and b + + = 1. By Corollary of Lemma 2.2.3, we know that a + + = a + 1
and b++ = b+1; hence, a+1 = 1 and b+1 = 1. In particular, a+1 = b+1. By
Proposition 2.2.6 (cancellation law), we get that a = b. Hence, this natural
number is unique.

Inductive step: Suppose that for n, there exists exactly one natural number
m such that m + + = n. We want to show that for n + +, there exists exactly
one natural number p such that p + + = n + +.

Existence: Take p = n. Then p + + = n + + holds.
Uniqueness: Suppose there exist two numbers, a and b, such that a++ = n++

and b + + = n + +. Then by transitivity, a + + = b + +. By the Corollary to
Lemma 2.2.3, we get that a + + = a + 1 and b + + = b + 1, so a + 1 = b + 1.
By the cancellation law, a = b, so p = a = b is a unique choice2.

Problem (2.2.3). Prove Proposition 2.2.12; i.e., the following properties
about order, given natural numbers a, b, c:

(a) (Order is reflexive): a ≥ a.
(b) (Order is transitive): If a ≥ b and b ≥ c, then a ≥ c.
(c) (Order is anti-symmetric): If a ≥ b and b ≥ a, then a = b.
(d) (Addition preserves order): a ≥ b if and only if a + c ≥ b + c.
(e) a < b ⇐⇒ a + + ≤ b.
(f) a < b ⇐⇒ b = a + d for some positive number d.

Solution. (a). By the definition of addition, 0 + a = a. Since addition is
commutative, 0 + a = a + 0; hence, a + 0 = a. By the definition of an order,
a + 0 ≥ a. But since a + 0 = a, by Lemma 2.2.2 we get that a ≥ a.

(b). By the definition of order, a = b + d for some natural number d, and
b = c + e for some natural number e. Hence, a + b = (b + d) + (c + e). By
the associativity of addition, (b + d) + (c + e) = b + (d + (c + e)). Hence,
a + b = b + (d + (c + e)). By the commutativity of addition, a + b = b + a; hence,
b + a = b + (d + (c + e)). Since (d + (c + e)) is a natural number, we can use the
cancellation law to get a = (d + (c + e)) = d + (c + e). From here we get that

a = d + (c + e)

= (d + c) + e (By associativity)

= (c + d) + e (By commutativity)
2We never really used the inductive assumption in this proof—so I guess we never really

used the hint in Tao’s notes.



4

= c + (d + e). (By associativity)

Since d + e is a natural number and a = c + (d + e), by the definition of order,
we have that a ≥ c.

(c). By the definition of order, a = b + c for some natural number c and
b = a + d for some natural number d. By substituting the expanded value of b,
we get that a = (a + d) + c, which, by associativity, equals a + (d + c). Hence,
a = a + (d + c). By Lemma 2.2.2, a + 0 = a + (d + c). By the cancellation law,
0 = d + c, and by Corollary 2.2.9, d = 0 and c = 0. Hence, a = b + 0, so by
Lemma 2.2.2, a = b.

(d). ( =⇒ ): We prove this using induction on c.
Base case: we want to prove that if a ≥ b, then a + 0 ≥ b + 0. By Lemma

2.2.2, the second statement is equivalent to a ≥ b, which follows from the
assumption trivially.

Inductive step: Suppose that a ≥ b, and that a ≥ b =⇒ a + c ≥ b + c. We
want to show that a + c + + ≥ b + c + +. We do this as follows:

a + c + + ≥ b + c + + ⇐⇒

a + c + + = (b + c + +) + r ⇐⇒ (By definition of order)

a + (c + 1) = (b + c + +) + r ⇐⇒ (By Corollary to Lemma 2.2.3)

a + (c + 1) = b + (c + + + r) ⇐⇒ (By associativity)

a + (c + 1) = b + (r + c + +) ⇐⇒ (By commutativity)

(a + c) + 1 = (b + r) + c + + ⇐⇒ (By associativity)

(a + c) + 1 = (b + r) + (c + 1) ⇐⇒ (By Corollary to Lemma 2.2.3)

(a + c) + 1 = ((b + r) + c) + 1 ⇐⇒ (By associativity)

(a + c) = ((b + r) + c) ⇐⇒ (By cancellation)

a + c = b + (r + c) ⇐⇒ (By associativity)

a + c = b + (c + r) ⇐⇒ (By commutativity)

a + c = (b + c) + r ⇐⇒ (By associativity)

a + c ≥ b + c (By definition of order)

Thus, a + c ≥ b + c =⇒ a + c + + ≥ b + c + +, but we supposed that a ≥ b,
and by the inductive hypothesis, a ≥ b =⇒ a+c ≥ b+c, so a+c++ ≥ b+c++.
This closes the induction, and we are done.

(⇐= ): This part is easy, and done as follows:

a + c ≥ b + c =⇒
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a + c = (b + c) + r =⇒ (By the definition of order)

a + c = b + (c + r) =⇒ (By associativity)

a + c = b + (r + c) =⇒ (By commutativity)

a + c = (b + r) + c =⇒ (By associativity)

a = b + r =⇒ (By cancellation)

a ≥ b (By definition of order)

(e). ( =⇒ ): Suppose that a < b. Then by definition, b = a + c for some
natural number c and a 6= b.

Claim 0.1. c 6= 0.

Proof. Suppose c = 0. Then, we have that a + 0 = b. By Lemma 2.2.2, we get
that a = b, a contradiction.

Claim 0.2. c ≥ 1.

Proof. Essentially, what we want to show is that any positive number can be
written in the form 1 + d. Let’s do this by inducting on c, an (arbitrary) positive
integer.

Base case (c = 1): Set d = 0. In this case, c = 1 = 1 + 0 = 1 + d by Lemma
2.2.2.

Inductive step: Suppose c = 1+d for some number d. Then c++ = (1+d)++
by injectivity of the successor function. By commutativity, the right-hand side
equals (d + 1) + +, which by the definition of addition equals d + + + 1. Hence,
by commutativity, we get that c + + = 1 + d + +, which closes the induction.

Since c ≥ 1, we can write c as 1 + r, for some natural number r. By plugging
this representation of c into b = a+c, we get that b = a+(1+r); by associativity,
b = (a + 1) + r; by Corollary to Lemma 2.2.3, b = (a + +) + r; by definition
of order, a + + ≤ b.

(⇐= ): Suppose that a++ ≤ b. By Corollary to Lemma 2.2.3, a+1 ≤ b.
By definition of order, a ≤ b. Thus, by definition of <, it suffices to show that
a 6= b. To do this, suppose that a = b. Since we know that a + 1 ≤ b, we
can substitute in the value for a to get b + 1 ≤ b. By definition of order, this
means that b = (b + 1) + r for some natural number r. By associativity, we
get b = b + (1 + r); by cancellation, we get that 0 = 1 + r. By commutativity,
0 = r + 1. By Corollary to Lemma 2.2.3, we get that 0 = r + +; hence, it
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is a successor of a natural number. But this is a contradiction of Axiom 2.3;
hence, our assumption was false, so a 6= b, so we are done.

(f). ( =⇒ ): From (e), we know that a < b =⇒ a + + ≤ b. Hence,
b = (a + +) + r by definition of order. By the Corollary to Lemma 2.2.3,
b = (a + 1) + r, which by associativity equals a + (1 + r). Set d = 1 + r. Clearly,
d is positive, since by commutativity and the Corollary to Lemma 2.2.3,
d = r + +, so by Axiom 2.3, d 6= 0. Also, b = a + d by substitution, so we are
done.

(⇐= ): Suppose that b = a + d for some positive number d. We proved in
(e) that a positive number must be ≥ 1; hence, d = 1 + r by definition of order.
By commutativity, d = r + 1; by the Corollary to Lemma 2.2.3, d = r + +.
Substituting this in, we get b = a + r + +, which by commutativity equals
(r + +) + a, which by the definition of addition, case II, equals (r + a) + +. Since
b = (r + a) + + and (r + a) + + + 0 = (r + a) + + by Lemma 2.2.2, we get that
b = (r + a) + + + 0. By the definition of order, this means that b ≥ (r + a) + +.
By (e), this implies that b > r + a.

Problem (2.2.5). Prove proposition 2.2.14: Let m0 be a natural number, and
let P (m) be a property pertaining to an arbitrary natural number m. Suppose
that for each m ≥ m0, we have the following implication: if P (m′) is true for
all natural numbers m0 ≤ m′ < m, then P (m) is also true. (In particular, this
means that P (m0) is true, since in this case the hypothesis is vacuous.) Then
we can conclude that P (m) is true for all natural numbers m ≥ m0.

Solution. Following the hint, we define Q(n) to be the property that P (m) is
true for all m0 ≤ m < n. We prove the statement by inducting on n.

Base case (n = 0): No such m < 0 exist, so Q(0) is vacuously true.
Inductive step: suppose Q(n) is true—that is, P (m) is true for all m0 ≤ m <

n. But since P (m) is true for all m0 ≤ m < n, P (n) is true by the assumption in
the problem statement. Hence, P (m) is true for all m0 ≤ m ≤ n; by properties
of order, this is equivalent to P (m) being true for all m0 ≤ m < n + 1; in other
words, Q(n + 1) is true, which closes the induction.

Problem (2.2.6). Prove the property of backwards induction.

Solution. We show this by induction on n.
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Base case (n = 0): Suppose that P (0) is true. We want to show that P (m)
is true for all m ≤ 0. The only m that fits this description is m = 03. But P (m)
is true by assumption.

Inductive step: suppose that if P (n) is true, then P (m) is true for all natural
numbers m ≤ n. It suffices to show that if P (n++) is true, then P (m) is true for
all natural numbers m ≤ n + +. But by the given property of the statement P ,
if P (n + +) is true, then P (n) must be true as well. By the inductive hypothesis,
P (m) is true for all natural numbers m ≤ n. But by assumption it’s also true
for n + +. Hence, P (m) is true for all natural numbers m ≤ n + +, which closes
the induction.

2 Multiplication

Before we begin doing the problems in the multiplication section, it will be
helpful to prove a couple of lemmas that we’ll use later on4.

Lemma 1
Let m be a natural number. Then, m× 0 = 0.

Proof. We do this by induction on m.
Base case (m = 0): 0× 0 = 0 by the definition of multiplication, case I.
Inductive step: suppose that m×0 = 0. We want to show that m++×0 = 0.

By the definition of multiplication, case II, we know that m++×0 = (m×0)+0 =
0 + 0 = 0, using the inductive hypothesis at the second equality.

Lemma 2
Let m be a natural number. Then 0×m = m× 0.

Proof. We prove this by induction.
Base case (m = 0): By definition, 0 ×m = 0. By Lemma 1, m × 0 = 0.

Hence, 0×m = m× 0.
Inductive step: suppose that 0 × m = m × 0. We want to show that

0×m + + = m + +× 0. The left-hand side, by the definition of multiplication,
case I, equals 0. The right-hand side, by the definition of multiplication, case II,

3True by Corollary 2.2.9 and the definition of order.
4Granted, in like one problem, but they’re helpful anyways!
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equals (m× 0) + 0 = 0 + 0 = 0 by Lemma 1. Hence, 0×m + + = m + +× 0,
which closes the induction.

Lemma 3
Let m, n be natural numbers. Then m× n + + = m× n + m.

Proof. We prove this by induction on m.
Base case (m = 0): we want to show that 0 × n + + = 0 × n + 0. The

left-hand side is 0 by the definition of multiplication, case II. The right-hand
side is 0 + 0, by the definition of multiplication, which also equals 0.

Inductive step: suppose that m×n + + = m×n + m. We want to show that
m + +× n + + = m + +× n + m + +.

First, let’s simplify the left-hand side:

(m + +)× (n + +) = (m× n + +) + (n + +) (By def. of multiplication)

= m× n + m + n + + (By def. of multiplication)

Now, let’s simplify the right-hand side:

(m + +)× n + (m + +) = (m× n) + n + m + +

= m× n + n + m + + (By def. of multiplication)

= m× n + n + m + 1 (By Cor. to Lemma 2.2.3)

= m× n + m + n + 1
(By commutativity of addition)

= m× n + m + n + + (By Cor. to Lemma 2.2.3)

Haha, now the left-hand side and the right-hand side are equal, which closes
the induction.

Problem (2.3.1). Let m, n be natural numbers. Then n×m = m× n.

Proof. We prove this by induction on n.
Base case (n = 0): 0×m = m× 0 is true by Lemma 2.
Inductive step: suppose that n × m = m × n. We want to show that

n + +×m = m× n + +.
By applying the definition of multiplication, case II, to the left-hand side, we

get that n + + ×m = (n ×m) + m. By the inductive hypothesis, this equals
(m× n) + m.
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Now, let’s look at the right-hand side. By Lemma 3, m×n++ = m×n+m.
Haha, the two sides are equal, induction closed.

Problem. Prove lemma 2.3.3: Let n, m be natural numbers. Then n×m = 0 if
and only if at least one of n, m is equal to zero. In particular, if n and m are
both positive, then nm is also positive.

Solution. Following Tao’s hint, we’ll prove the second statement first.
Let n and m be positive natural numbers. We want to show that n×m is

positive. Suffices to show that n×m is nonzero, by definition of positive. We
proved in 2.2.3(e) that if a number is positive, it is greater than or equal to 1;
that is, n = 1 + a and m = 1 + b for some natural numbers a, b. Thus, it suffices
to show that (1 + a)× (1 + b) 6= 0. First of all, we notice the following:

n×m = (1 + a)× (1 + b)

= (a + 1)× (b + 1) (By commutativity of addition)

= a + +× b + + (By the Corollary to Lemma 2.2.3)

= (a× b + +) + b + + (By the definition of multiplication)

To show that this does not equal zero, we proceed by contradiction. Suppose
that n ×m does equal zero; in this case, (a × b + +) + b + + = 0 as well. By
Corollary 2.2.9, this means that (a× b + +) = 0, and, more importantly, that
b + + = 0. But the latter cannot happen by Axiom 2.3, so n ×m does not
equal zero; hence, if n and m are both positive, then nm is positive.

Now, let’s actually prove the lemma.
( =⇒ ): This part is pretty easy using the above result. If n×m = 0, then

nm is not positive. If n and m were both positive, then nm would have been
positive. But 0 is not positive; hence, n and m are not both positive; in other
words, at least one of n, m is equal to zero.

( ⇐= ): We split this into two cases: n = 0 and m = 0. When n = 0,
nm = 0 by the definition of multplication, case I. When m = 0, nm = 0 by our
fortuitously proved Lemma 15.

So we’re done.

Lemma 4
For any natural number c, c× 1 = c.

5Hey, I guess we did use the lemmas more than once!
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Proof. Induct on c.
Base case (c = 0): c× 1 = 0× 1 = 0 = c by the definition of multiplication,

case I.
Inductive step: suppose that c×1 = c. We want to show that c++×1 = c++.

We have that

c + +× 1 = (c + 1)× 1 (By the Corollary to Lemma 2.2.3)

= c× 1 + 1× 1 (By distributivity)

= c× 1 + 1 (By the definition of multiplication)

= c + 1 (By the inductive hypothesis)

= c + + (By the Corollary to Lemma 2.2.3)

which closes the induction.

Problem (2.3.3). Prove proposition 2.3.5: for any natural numbers a, b, c, we
have (a× b)× c = a× (b× c).

Solution. This is easy if we induct on c.
Base case (c = 0): (a× b)× 0 = 0 by Lemma 1; a× (b× 0) = a× 0 = 0 by

Lemma 1; hence, (a× b)× c = a× (b× c) when c = 0.
Inductive step: suppose that (a× b)× c = a× (b× c). We want to show that

a× (b× c + +) = (a× b)× c + +. We do this as follows:

a× (b× c + +) = a× (c + +× b) (By commutativity of multiplication)

= a× ((c× b) + b) (By the definition of multiplication)

= a× (c× b) + a× b (By distributivity)

= a× (b× c) + a× b (By commutativity of multiplication)

= (a× b)× c + a× b (By the inductive hypothesis)

= (a× b)× c + (a× b)× 1 (By Lemma 4)

= (a× b)× (c + 1) (By distributivity)

= (a× b)× c + + (By the Corollary to Lemma 2.2.3)

which closes the induction; thus, we are done.

Problem (2.3.4). Prove the identity (a + b)2 = a2 + 2ab + b2 for all natural
numbers a, b.
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Solution. At this point it seems like a grave sin not to use induction, but I claim
that we can do it directly6. On the left-hand side, we get that

(a + b)2 = (a + b)1 × (a + b) (By the definition of exponentiation)

= ((a + b)0 × (a + b))× (a + b) (By the definition of exponentiation)

= (1× (a + b))× (a + b) (By the definition of exponentiation)

= ((a + b)× 1)× (a + b) (By commutativity of multiplication)

= (a + b)× (a + b) (By Lemma 4)

= (a + b)× a + (a + b)× b (By distributivity)

= a× a + b× a + a× b + b× b (By distributivity)

On the right-hand side, we get

a2 + 2ab + b2 = a1 × a + 2ab + b1 × b (By the definition of exponentiation)

= (a0 × a)× a + 2ab + (b0 × b)× b

(By the definition of exponentiation)

= (1× a)× a + 2ab + (1× b)× b

(By the definition of exponentiation)

= (a× 1)× a + 2ab + (b× 1)× b (By commutativity)

= a× a + 2ab + b× b (By Lemma 4)

= a× a + (1 + 1)(ab) + b× b

= a× a + ab + ab + b× b (By distributivity)

= a× a + b× a + a× b + b× b (By commutativity)

They’re equal! So we’re done.

Problem (2.3.5). Prove proposition 2.3.9: let n be a natural number, and let q

be a positive number. Then there exist natural numbers m, r such that 0 ≤ r < q

and n = mq + r.

Solution. We will heed Tao’s advice and fix q and induct on n.
Base case (n = 0): Take m = 0 and r = 0. Thus mq+r = 0×q+0 = 0+0 = 0,

where we used the definition of multplication, case I. All we need to show is that
r < q. Since q is positive, we proved in exercise 2.2.3(e) that q ≥ 1. By definition
of order, 1 ≥ 0, so by transitivity of order, q ≥ 0; hence, q ≥ r. But q 6= r,

6In the following chain of equivalences, we’re going to be a bit careless with parentheses
since we’ve already proven associativity of multiplication in Proposition 2.3.5 in the previous
exercise—so a couple of times, I might skip an "associativity" step.
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for if they were equal, then q would equal zero, and not be positive, which is a
contradiction. Hence, r < q. But r = 0 so r ≥ 0. Thus, 0 ≤ r < q, as desired.

Inductive step: suppose that n = mq + r where 0 ≤ r < q. We want to show
that n++ = m′q+r′ where 0 ≤ r′ < q for some natural numbers m′, r′. Suppose
that m′ = m, and r′ = r + +. We have two cases: either r′ < q, or r + + ≮ q. In
the first case, we get that m′q+r′ = mq+r++ = r+++mq = (r+mq)++ = n++
and 0 ≤ r′ < q, so we are done. Thus, we only need to consider the case where
r + + ≮ q. By trichotomy of order, this means that r′ > q or r′ = q. Assume
r′ > q; that is, r′ = q + a and r′ 6= q. By the inductive hypothesis, r < q.
By Proposition 2.2.12(e), r + + = r′ ≤ q. By trichotomy of order, this
is a contradiction. Hence, we are left with the case where r′ = q. But then,
n + + = m′q + r′ = mq + r′ = mq + q, which by distributivity equals q(m + 1),
which by the Corollary to Lemma 2.2.3 and commutativity equals m + +× q.
Hence, we get that n + + = m + +× q + 0 by Lemma 2.2.2. Hence, we redefine
the variables m′ = m + + and r′ = 0; we can see that n + + = m′ × q + r′ as
shown above, and r′ = 0 so 0 ≤ r′ < q by an argument identical to the one in
the base case. So we have shown every case, so we close the induction, and we
are done.

3 Bijections

Problem (3).

Solution. Take c = 0other and g be the successor function on Nother, denoted
++other. By the principle of recursion, there exists a unique function f : N→
Nother such that f(0) = 0other and (∀n)f(n + +) = g(f(n)) = f(n) + +other.
This f is therefore a bijection since it respects f(0) = 0other and (∀n)f(n + +) =
f(n) + +other.
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