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Problem (4.1.3). Prove that (—1) X a = —a for every integer a.

Solution. Let’s write the two integers as formal differences, where —1 would
be 0 — —1, and a would be ¢ — —d for some natural numbers c¢,d. By the
definition of multplication on integers, (—1) x a = (0 — —1) x (¢ — —d) =
(Oxc+1xd)——(0xd+1xc) = (0+d)——(0+¢c) == d——c= —(¢c——d) = —a. O

Problem (4.1.4). Prove the remaining identities in Proposition 4.1.6; i.e.,
that

b) +y)+z=z+(y+2)
(¢c) z+0=0+z==x
(d) z+ (—2)=(—z)+2=0

Solution. For all these problems, let t =a— —b,y=c— —d,and z =e — —f.
(a).
z+y=(a——b)+(c——d)
(

=(a+c)——(b+4d) (By definition of addition on Z)
=(c+a)——(d+b) (By commutativity of addition on N)
=(c——=d)+ (a—-Db) (By definition of addition on Z)
=y+z



(b).
(+y)+z=((a==b)+(c——d)+(e-—f)

((a+c¢)==(b+d)+(e——f)
(By definition of addition on Z)

((a+c)+e)——((b+d)+ f) (By definition of addition on Z)

=(a+(ct+e)— =0+ (d+f))
(By associativity of addition on N)

=(a+b)+ ((c+e)——(d+ f)) (By definition of addition on Z)

=(a+b)+((c==d)+(e--f))
(By definition of addition on Z)

=z+(y+2)
(¢). 4+ 0=0+x by (a); thus, suffices to show that 0 + z = x:
0+z=(0——-0)+(c——d)

=0+4+c¢)——(0+4d) (By definition of addition on Z)
=c——d (By definition of addition on N)
=z

(d). z + (—x) = (—z) + = by (a); thus, suffices to show that x + (—z) = 0:

=(a+b)——(b+a) (By definition of addition on Z)
=(a+b)——(a+Db) (By commutativity of addition on N)
=(a——a)+ (b—-b) (By definition of addition on Z)
=(0—-—-0)+ (0——-0)

=0.

= (ac + bd) — —(ad + be) (By definition of multiplication on Z

(
( )
= (ca+ db) — —(da+ ¢b)  (By commutativity of multiplication on N)
= (ca + db) — —(cb + da) (By associativity of addition on N)

( )

c¢——d) x (a——b) (By definition of multiplication on Z

(f). Proven in Tao



(g). 1 = 1z follows from (e); thus, suffices to show that 1 x z = x:
1xz=(1--0)x(a—-b)

=(1xa+0xb)——(1xb+0xa)
(By definition of multiplication on Z)

=(a+0)——(b+0) (By Lemma 4 on the last homework)
=a—-b (By properties of addition on N)
=z

(h).
2(y+2)=(a—-=b)x((c==d)+(e—-—-f))
=(a——=b)x((c+e)——(d+ f)) (By definition of addition on Z)
=(ax(cte)+bx(d+[))——(bx(ct+e)+ax(d+f))
(By definition of multiplication on Z)

= (ac+ ae +bd+bf) — —(bc+ be + ad + af)
(By the distributive property on N)

= (ac+bd + ae + bf) — —(bc + ad + be + af)
(By the commutativity of addition on N)

= ((ac+bd) — —(bc + ad)) + ((ae + bf) — —(be + af))
(By definition of addition on Z)

=(a—-b)x(c——=d)+ (a—=b) x (e——f)
(By definition of multiplication on Z)

(y+2)z =y +2) (By (e))
=zy+az (By (h))

=yx + 2z By (e).)

O

Problem (4.1.5). Prove Proposition 4.1.8: Let a and b be integers such that
ab = 0. Then either a = 0 or b = 0 (or both).

Proof. Write a as a formal difference n — —m, and b as a formal difference p — —gq.
We know that ab = (n — —m) x (p — —¢) = 0 — —0; hence, (np + mq) — —(ng +
mp) = 0 — —0. Thus, np + mg = 0 and ng + mp = 0. By Corollary 2.2.9,

np = mq = ng = mp = 0. By Lemma 2.3.3, at least one of {n,p} is zero,



at least one of {m, ¢} is zero, at least one of {n, ¢} is zero, and at least one of
{m, p} is zero. We can split this into two cases:

Case I (n = 0): Since at least one of {n,p} is zero, p can either be zero or
non-zero.

Case A (p = 0): Since at least one of {m,p} is zero, m can either be zero or

non-zero.
Case N (m = 0): In this case, n — —m = 0 — —0, so a = 0, so we’re done.
Case J (m # 0): Since at least one of {m,q} is zero, ¢ = 0. Hence,
p——q=0-——-0,s0b=0, so we're done.

Case B (p # 0): Since at least one of {m,p} is zero, m = 0. Hence,
n——-—m=0==0, soa=0,so we're done.
Case II (n # 0): Since at least one of {n, p} is zero, p = 0. Also, at least one

of {n, q} is zero, so ¢ = 0. Hence, p — —¢ =0 — —0, so b =0, so we’re done. [

Problem (4.1.6). Prove Corollary 4.1.9: If a, b, ¢ are integers such that ac = bc

and c is non-zero, then a = b.

Solution. Let’s begin by denoting a as m — —n, b as p — —q, and ¢ as x — —vy,
where © — —y # 0. By the equivalence of integer representations, it suffices to
show that m + ¢ = n + p. We do this as follows:

ac = be —
(m—-—n)x(z—--y)=p~-—q) x (- —y) o
(mz +ny) — —(my + nz) = (pr +qy) — —(qx +py) =

(By definition of multiplication on Z)
mx +ny +qxr +py = my +nr + pr + qy —
(By equivalence of integer representations)
(m+q)z+(n+p)y=(n+pr+(m+qly =
(By distributivity over N)

(m+qz——(n+pr)=(n+py——(m+qy) =
(By equivalence of integer representations)

(m+g)x = =(n+p)z)+(m+qy—-—(n+p)y) =0 =
(By subtraction on Z)

(m+g)(z+y) ——(n+p)(z+y) =0 =
(By definition of addition on Z)

(m+q)(z+y)=(n+p)(z+y) =



m+qg=n+p
(By the cancellation law for natural numbers)

which was to be demonstrated. O

Lemma 1l

Additive cancellation law for integers: if a, b, ¢ are integers and a + ¢ = b+,
then a = b.

Proof. Write a as m — —n, b as p — —q, and ¢ as x — —y. We then have that
(m—-n)+@--y)=@p—-—q +@--y) =
(mz +ny) — —(nz +my) = (pr +qy) — —(qz +py) =
me +ny + qr +py = nr +my + pr +qy —
m+qg=n-+p —

(By similar argument to previous exercise)

m—-n=p——q =

a=h.
O
Lemma 2
"Adding to both sides": if a, b, c are integers and a = b, then a + ¢ = b+ c.
Proof. True by substitution. O

Problem (4.1.7). Prove Lemma 4.1.11: Let a,b,c be integers. Then, the

following are true:

(a) a > b if and only if @ — b is a positive natural number.

(b) (Addition preserves order) If a > b, then a +c¢ > b+ c.

(¢) (Positive multiplication preserves order) If a > b and c is positive, then
ac > be.

(d) (Negation reverses order) If a > b, then —a < —b.

(e) (Order is transitive) If ¢ > b and b > ¢, then a > c.

(f) (Order trichotomy) Exactly one of the statements a > b, a < b, or a = b is

true.



Solution. (a). ( = ): Suppose that a > b. By definition of order, a > b and
a # b. Hence, a = b + ¢ for some natural number ¢. Suppose that ¢ = 0. Then,
a = b+0z = b by Lemma 2.2.2, a contradiction. Hence, ¢ # 0, so it is a positive
natural number. Since a = b+ ¢, and —b is an integer, a + (—b) = b+ c + (=b).
By commutativity and the definition of subtraction, a — b = ¢. But we showed
that c¢ is a positive natural number, so we’re done.

( <= ): Suppose that a — b = ¢, where c¢ is a positive natural number (so we
can consider it an integer; namely, ¢ — —0). By "adding to both sides", we get
that a — b+ b = ¢+ b. By Exercise 4.1.4(d), this means that a +0 = ¢+ b,
so a = ¢+ b, so by commutativity a = b + ¢. Hence, by definition of order,
a > b. Suppose a = b. By Lemma 2.2.2, we know that a +0 = b + ¢, and
by substitution a + 0 = a 4+ ¢. By cancellation, 0 = ¢, which means that c is
not positive, a contradiction. Hence, a # b, but a > b, so by definition of order,
a >b.

(b). Suppose that a > b. By (a), this means that a — b = d for some positive
natural number d. By Exercise 4.1.4(d), 0 = ¢+ (—¢). By Lemma 2.2.2,
(a—b)+0 = d. Combining these two statements, we get that (a—b)+(c+(—c)) = d.
By commutativity we get (a + ¢) + (=b + —c¢) = d; by the laws of algebra,
(a+¢) — (b+ ¢) = d. Since d is a positive natural number and a + ¢ and b + ¢
are integers, by (a), a+c¢>b+c.

(c). Suppose that a > b. By (a), a — b = d for some positive natural d. By
left-multiplication on both sides, ¢(a — b) = e¢d. By distributivity, ca — ¢b = cd.
By commutativity, ac — bc = c¢d. By Lemma 2.3.3, cd is a positive natural
number. Thus by (a), ac > bc.

(d). Suppose that a > b, so by (a), a —b = d where d € N, and let’s explicitly

represent a as m — —n, b as p — —q, and d as d — —0. Hence, we have that
m—-n=p——q+d——0—=
m—-n=@p+d) ——q = (By addition on Z)
m+qg=n+p+d = (By equivalent representations)
n——-m=q——(p+d) = (By equivalent representations)
n——m=(qg——-p +0—-—d) = (By addition on Z)
n——m+d——-0=(——-p)+(0—-—d)+(d——-0) =
(By adding to both sides)
n——m+d—-0=¢q——p+0 = (By laws of algebra)
n——m+d—-0=q——p = (By laws of algebra)



—a+d=-b =
—b=—-a+d
—b> —a (By (a).)

(e). Suppose that @ > band b > ¢. By (a), a =b+dand b = c+ e,
where d,e € N are positive. By Lemma 2.7.7  adding two positive naturals
yields a natural, so d + e is positive. Adding the two equations together, we get
a+b=b+d+ c+ e, which by commutativity yields a +b = ¢+ d + e + b, which
by cancellation and associativity yields a = ¢+ (d + €). Since d + e is a positive
natural, by (a), a > c.

(f). We split this proof into two parts. First, we’ll show that no more than
one of these statements can be true; then, we’ll show that at least one of these
statements must be true.

Suppose that a > b. In that case, by (a), a — b = ¢ where ¢ is a positive
natural.

Suppose that also a < b. In that case, by (a), b — a = d where d is a positive
natural. Adding the two equations together, we get a — b+ b — a = ¢ + d, which
by the laws of algebra gives us that 0 = ¢+ d. But ¢ + d is positive since we’re
adding two positive naturals, so we get a contradiction.

Suppose that also a = b. In that case, by substitution we get a — a = ¢; by
the laws of algebra, 0 = c. But c is positive, a contradiction. So we’ve showed
that if @ > b, then the other two statements cannot be true.

Suppose now that a < b. We can identically show that then a > b and a =b
cannot be true by repeating the above reasoning with a and b switched. So we’ve
showed that if @ < b, then the other two statements cannot be true.

Suppose now that a = b.

Suppose that also a < b. But this is a contradiction by definition.

Suppose that also @ > b. But this is a contradiction by definition.

Thus, we've shown that if any one of these statements is true, the other ones
are necessarily false; hence, no more than one of these three statements can be
true.

Now, let’s show that at least one of these statements is true.

Consider two integers a and b. Their difference, a — b, is another integer c.
By Lemma 4.1.5, one of the following is true: either ¢ = 0, or ¢ is a positive
natural n, or ¢ is the negation —n of a positive natural n.

In the first case, a —b=0,s0 a — b+ b =0+ b, so by the laws of algebra

a=nb.



In the second case, a — b = n where n is a positive natural, so by (a), a > b.

In the final case, a —b = (0 — —n); as shown earlier, this means that b—a = n,
so by (a), b > a.

Since in every possible case one of the three statements is true, and no
more than one of the statements can be simultaneously true, exactly one of the

statements a > b, a < b, or a = b is true. O

Problem (4.1.8). Give an example of a property P(n) pertaining to an integer
n such that P(0) is true, and that P(n) implies P(n + +) for all integers n, but

P(n) is not true for all integers n.

Solution. Consider the property P(n): n > 0. Clearly P(0) is true since 0 > 0;
similarly, we can show that if n > 0 then n + 4+ > 0! via the Corollary to
Lemma 2.2.3 and the definition of order. However, not all integers are greater

than or equal to 0. O

Problem (4.2.1). Show that the definition of equality for the rational numbers
is transitive; that is, if a//b=c¢//d and ¢//d =¢//f, then a//b=¢//f.

Solution. Suppose that a//b=c//d and ¢//d =e//f. By definition of equality,
for the first equivalence, we get that ad = bc. By definition of equality for
the second equivalence, we get that cf = de. Now, consider the statement
that ad = be. Multiplying both sides by f, we get that (ad)f = (be)f. By
associativity, (ad)f = b(cf), but c¢f = de, so (ad)f = b(de). By associativity
and commutativity, (af)d = (be)d, so by cancellation we get that af = be. By
definition of equality, a//b=¢//f. O

Problem (4.2.3). Prove that the rationals Q form a field; that is, if x,y, z are

rationals, then the following properties hold:

Ibeing vacuously true when n < 0
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() (y+2)o = yo+ 22
() If x #0, then xz~! =271z = 1.

Solution. For the rest of this problem, let © = a//b, y = ¢//d, and z =¢//f be

formal ratio representations of z, y, and z, respectively.

(a).

z+y=(a//b)+ (c¢//d)

= (ad + bc)//(bd) (By definition of addition over Q)

= (da + ¢b)//(db) (By commutativity of multiplication over Z)

= (¢b+ da)//(db) (By associativity of multiplication over Z)
= (¢//d) + (a//b) (By definition of addition over Q)
=y+x

(b).
(z+y) +2=((a//b) +(c//d)) + (e// )

= (ad+bc)//(bd) + (e//f) (By definition of addition over Q)

= ((ad +be) f + (bd)(e))// (bdf)
(By definition of addition over

= (adf + bef + bde)//(bdf) (By distributivity
= (adf + b(cf +de))//(bdf) (By distribytivity)
=a//b+ ((cf +de)//(df))  (By definition of addition over Q)
= (a//b) + ((¢//d) + (e//f)) (By definition of addition over Q)
=x+ (y+ 2).

Q)
)

(¢). By (a), z + 0 =0+ «. Thus, it suffices to show that 0+ = . We do

this as follows:

0+ =(0//1)+ (a//b)

= (0b+ 1a)//(1b) (By definition of addition over Q)
=a//b (By rules of algebra over Z)
=z.

(d). By (a), 4+ (—z) = (—x) + z. Thus, suffices to show that « + (—x) =0,

which we do as follows:

z+ (—z) = (a//b) + ((—a)//b) (By the definition of negation over Q)



11

= (ab+ b(—a))//(bb) (By definition of addition over Q)
= (ab—ab)//(bb)  (By commutativity of multiplication over Z)
=0//(bb)

=0.

(e).
zy = (a//b) x (¢//d)

= (ac)//(bd) (By definition of multiplication over Q)
= (ca)//(db) (By commutativity of multiplication over Z)
= (¢//d) x (a//b) (By definition of multiplication over Q)
= yz.
(f).
(e9)> = ((0//b) x (c//d)) % (e//)

= (ac//bd) x (e//f) (By definition of multiplication over Q)

= (ac)e//(bd) f (By definition of multiplication over Q)

= a(ce)//b(df) (By associativity of multiplication over Z)

= (a//b) x (ce//df) (By definition of multiplication over Q)

= (a//b) x ((¢//d) x (e//f)) (By definition of multiplication over Q)

= z(yz).
(g). By (a), z1 = 1lz. Thus, suffices to show that x1 = z, which we do as

follows:

x1= (a/ /) x (1//1)

= (al)//(b1) (By definition of multiplication over Q)
=a//b (By rules of algebra over Z)
(h).
2(y +2) = (a//b) x ((¢//d) + (e//))
= (a//b) x (cf +de)//(df) (By definition of addition over Q)
= a(cf + de)//b(df) (By definition of multiplication over Q)
= (acf + ade//bdf ) x 1 = (acf + ade//bdf) x (b//b)

(By (2))
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= (b(acf + ade))//b(bdf)  (By definition of multiplication over Q)
= bacf + bade//bbdf (By distributivity over Z)
((ac)(bf) + (bd)(ae))//(bd)(df)

(By commutativity of multiplication over Z)
ac//bd + ae/ /bf (By definition of addition over Q)
(a//b) x (c//d) + (a//b) x (e//f)

(By definition of multiplication over Q)

=xy + 22,

(y+2)z=2a(y+2) (By (e))
=y + 2 (By (b))
=y + zx. (By (e))

(j). By (e), zz~! = 2~ 12. Hence, suffices to show that zx~! = 1, which we

do as follows:

zx~t = (a//b) x (b//a) (By definition of the reciprocal in Q)
=ab//ba (By definition of multiplication over Q)
=ab//ab (By commutativity of multiplication over Z)
=1 (By equivalent representations of rationals.)
O
Lemma 3

The only integer whose negation is itself is 0.

Solution. It is easy to see that —0 =0 — —0 =0 — —0 = 0, so the negation of 0
is 0.

Suppose that there is some other integer a — —b whose negation is itself; i.e.,
a — —b = b— —a. By algebraic properties of integers, a — —b+ b — —a = 0, so
(a +b) — —(b+ a) = 0. By commutativity of naturals, (a +b) — —(a + b) = 0.
Thus, a +b = 0. Thus, a = 0 and b = 0. Thus, a — —b = 0. Thus, the only

integer whose negation is itself is 0. O

Problem (4.2.4). Prove Lemma 4.2.7: Let = be a rational number. Then

exactly one of the following three statements is true: (a) x is equal to 0. (b) z is
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a positive rational number. (c¢) z is a negative rational number.

Solution. First, let’s show that at most one of the three statements can be true.

Suppose that x is a positive rational number. Then, z = a//b for some
positive integers a, b.

Suppose that in addition, x is a negative rational number; that is, z = (—¢)//d
for some positive integers ¢,d. Hence, a//b = (—c)//d. By the equivalence of
rationals, ad = —(¢)b = —(cb). But a,b, ¢, d are all positive integers. Thus ad
and cb are positive integers. But —(cb) is the negation of a positive integer; hence,
negative. Thus, ad = —(cb) implies that a positive integer equals a negative
integer, a contradiction.

Suppose that in addition, x is equal to zero. Then 2 = 0//1. By equivalence
of rationals, a//b =2 =0//1 = al = 0. Thus, a = 0. But a was a positive
integer, so this is a contradiction.

Thus, when x is a positive rational, the other two statements cannot be true.

Now suppose that z is a negative rational number. Then, x = (—c)//d for
some positive integers ¢, d. Identical arguments as above hold to show that the
other two statements cannot be true.

Finally, suppose that = 0. Then x = 0//1.

Suppose that in addition, = is a positive rational number; that is, x = a//b
for some positive integers a,b. By equivalence of rationals, a//b =2 =0//1 =
al = b0. Thus, a = 0. But a was a positive integer, so this is a contradiction.

Suppose that in addition, x is a negative rational number; that is, x = (—¢)//d
for some positive integers ¢,d. By equivalence or rationals, —c//d = = =
0//1 = —cl =d0. Thus, —c =0, so ¢ = 0. But ¢ was a negative integer; in
particular, it was non-zero, a contradiction.

Thus, we have shown that no more than one of the three statements can be
true at any time.

Now, let’s show that at least one of the statements is true at any given
time. Suppose that = = a//b for some arbitrary integers a,b’. By trichotomy of
integers, we have the following cases:

Case I (a > 0): Thus a is a positive integer. We have several cases for b:

Case A (b > 0): In this case, a,b are positive integers, so x is a positive
rational number.

Case B (b < 0): In this case, a is a positive integer, and b is a negative

integer. In particular, b is the negation —c of some positive integer c. Hence,

20f course, b # 0.
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r = a//(—c). By equivalence of rationals, * = (—a)//c’. Since a and c are
positive integers, x is a negative rational number.

Case IT (a < 0): This a is a negative integer; in particular, it is the negation
—d of a positive integer d. What b can be falls into two cases.

Case A (b > 0): In this case, © = (—d)//b where b, d are positive integers, so
x is a negative rational number.

Case B (b < 0): In this case, x = (—d)//(—b). By equivalence of rationals,
x =d//b. Since d and b are positive integers, x is a positive rational number.

Case IIT (¢ = 0): In this case, z = 0//b. By equivalence or rationals,
x=0//1, so x is equal to zero.

Thus, in any case, at least one of the statements is true.

Since it is always true that at least one of the statements is true and at
most one of the statements is true, exactly one of the statements is true at all

times. O

Problem (4.2.6). Show that if z,y, z are rational numbers such that z < y and

z is negative, then xz > yz.

Solution. Denote = as a//b, y as ¢//d, and z as (—e)//f, where e, f are positive

integers. We know that y — x = m, where m is a positive rational number, since
y > x and that’s how the definition of order works. Then we get that

y—cr=m =

(y —x)(e//f) =mle//f)

yle//f) —a(e//f) =mle//[)

(¢//d)(e//f) = (a//b)(e//f) =m(e//])

ce//df —ae/[bf =m(e//f)

(=e)(=e)//df — (=a)(=e)//bf = m(e// )

m(e//f)

m(e//f)

m(e//f)-

3

S

S

(=¢//d)(=¢//f) = (=a/[b)(=e//[) = m(e// [
(=9)(2) = (=2)(2) =

TZ—yYyz=m

el

e/lf
e//f

But since e//f is a positive rational since e is a positive integer and f is a

positive integer, then by definition of ordering of the rationals, xzz > yz. O

3To verify this, observe that ac = (—a)(—c).



