Analysis HW \#5

Dyusha Gritsevskiy

February 2019

Problem (6). Let E^{\prime} be the set of all limit points of a set E. Prove that E^{\prime} is closed. Prove that E and \bar{E} have the same limit points. (Recall that $\bar{E}=E \cup E^{\prime}$.) Do E and E^{\prime} always have the same limit points?

Solution. First, let's prove that E^{\prime} is closed. To do that, consider some point x that is a limit point of E^{\prime}. We need to show that $x \in E^{\prime}$. Since x is a limit point of $E^{\prime}, \forall \epsilon>0$ such that $N_{\epsilon}(x)$ intersects non-trivially with E^{\prime}. Consider a point in this intersection, call it y. If $y=x$, then $x \in E^{\prime}$, so we're done. Thus assume $y \neq x$. Since y is a limit point of $E, \forall \delta>0, N_{\delta}(y)$ intersects non-trivially with E. Consider a point in this intersection, call it z. For x to be a limit point of $E, \forall r>0$, there must be a point $z \in E$ such that $d(x, z)<r$. But if we choose $\epsilon=\delta=r / 3$, then by the triangle inequality, $d(x, z) \leq d(x, y)+d(y, z)<\delta+\epsilon=2 r / 3<r$, so x is a limit point of E, so $x \in E^{\prime}$.

Now, let's prove that E and \bar{E} have the same limit points. By definition, any limit point of E is also a limit point of \bar{E}. Thus, it suffices to show that all limit points of \bar{E} are limit points of E. Consider some limit point x of \bar{E}. Then for any $\epsilon>0$, there is some $y \in \bar{E}$ such that $d(x, y)<\epsilon$. By definition of union, either $y \in E$ or $y \in E^{\prime}$. In the former case, x is a limit point of E, so we are done. In the latter case, for any $\delta>0$, there is some $z \in E$ such that $d(y, z)<\delta$. We want to show that x is a limit point of E; namely, that for all $r>0$, we can find a point z in E such that $d(x, z)<r$. Let $\epsilon=\delta=r / 3$. Then by the triangle inequality, $d(x, z) \leq d(x, y)+d(y, z)<\delta+\epsilon=2 r / 3<r$, so x is a limit point of E.

Suppose E and E^{\prime} have the same limit points. The limit points of E are just E^{\prime}. So for E and E^{\prime} to have the same limit points, the limit points of E^{\prime} must be E^{\prime}. We know that E^{\prime} is closed, so all its limit points are in E^{\prime}; however, we also need to show that every $x \in E^{\prime}$ is a limit point for E^{\prime}. This is definitely not
true in general-consider the set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}^{1}$. Its limit point is $\{0\}$, but its set of limit points clearly has no limit points.

Problem (7). Let $A_{1}, A_{2}, A_{3}, \ldots$ be subsets of a metric space.
(a) If $B_{n}=\cup_{i=1}^{n} A_{i}$, prove that $\overline{B_{n}}=\cup_{i=1}^{n} \overline{A_{i}}$, for $n=1,2,3, \ldots \ldots$
(b) If $B=\cup_{i=1}^{\infty} A_{i}$, prove that $\bar{B} \supseteq \cup_{i=1}^{\infty} \overline{A_{i}}$.

Show, by an example, that this inclusion can be proper.

Lemma 1

$B_{n}^{\prime}=\cup_{i=1}^{n} A_{i}^{\prime}$.

Proof. Essentially, what we are trying to show here is that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime}=\cup_{i=1}^{n} A_{i}^{\prime}$.
First, let's show that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime} \supseteq \cup_{i=1}^{n} A_{i}^{\prime}$. Suffices to show that for each k from 1 to $n, A_{k}^{\prime} \subset\left(\cup_{i=1}^{n} A_{i}\right)^{\prime}$, since if each of them is a subset, then their union would also be a subset. But clearly this is true, since the limit points of a set are the limit points of any larger set containing the set. Thus $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime} \supseteq \cup_{i=1}^{n} A_{i}^{\prime}$.

Now, all we need to show is that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime} \subseteq \cup_{i=1}^{n} A_{i}^{\prime}$. We can do this via induction; clearly it's true for the $n=1$ case. Now suppose that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime} \subseteq$ $\cup_{i=1}^{n} A_{i}^{\prime}$; we want to show that $\left(\cup_{i=1}^{n} A_{i} \cup A_{n++}\right)^{\prime} \subseteq \cup_{i=1}^{n} A_{i}^{\prime} \cup A_{n++}^{\prime}$. We can show the contrapositive by taking some $x \notin \cup_{i=1}^{n} A_{i}^{\prime} \cup A_{n++}^{\prime}$. Then there is a neighborhood $N_{r}(x)$ such that $\left(\cup_{i=1}^{n} A_{i}^{\prime}\right) \cap N_{r}(x) \subseteq\{x\}$, and a neighborhood $N_{s}(x)$ such that $A_{n++}^{\prime} \cap N_{s}(x) \subseteq\{x\}$. Since neighborhoods are open sets and the union of open sets is an open set, $N_{r}(x) \cap N_{s}(x)$ gives a neighborhood $N_{t}(x)$ around x. Then definitely $N_{t}(x) \cap\left(\cup_{i=1}^{n} A_{i} \cup A_{n++}\right)=\{x\}$, so x is not a limit point for $\left(\cup_{i=1}^{n} A_{i} \cup A_{n++}\right)$ and thus is not in $\left(\cup_{i=1}^{n} A_{i} \cup A_{n++}\right)^{\prime}$. This closes the induction, so we are done.

Solution. (a). $\overline{B_{n}}=B_{n} \cup B_{n}^{\prime}=\cup_{i=1}^{n} A_{i} \cup B_{n}^{\prime}=\cup_{i=1}^{n} A_{i} \cup \cup_{i=1}^{n} A_{i}^{\prime}$, which by rearrangement equals $\cup_{i=1}^{n}\left(A_{i} \cup A_{i}^{\prime}\right)=\cup_{i=1}^{n} \overline{A_{i}}$.
(b). By definition, $B \supseteq A_{i}$ for all $i \in \mathbb{N}^{+}$; using part (a), $\bar{B} \supseteq \overline{A_{i}}$ for all $i \in \mathbb{N}^{+} ;$combining the two, we get that $\bar{B} \supseteq \cup_{i=1}^{\infty} \overline{A_{i}}$.

For the last part of the question, consider $A_{i}=\left\{q_{i}\right\}$, where q_{i} is the $i^{\text {th }}$ rational number enumerated via a bijection $f: \mathbb{N} \rightarrow \mathbb{Q}$. Then $B=\mathbb{Q}$, so $\bar{B}=\mathbb{R}$, whereas $\cup_{i=1}^{n} \overline{A_{i}}=\cup_{i=1}^{n} \overline{q_{i}}=\cup_{i=1}^{n} q_{i}=\mathbb{Q}$. So clearly $B \supsetneq A$.

[^0]Problem (8). Is every point of every open set $E \subseteq \mathbb{R}^{2}$ a limit point of E ? Answer the same question for closed sets of \mathbb{R}^{2}.

Solution. Consider some point $x=\left(x_{1}, y_{1}\right)$ in an open set E. By definition x is an interior point; that is, $\exists r>0$ such that $N_{r}(x) \subseteq E$. Consider the point $y=\left(x_{1}+s, y_{1}\right)$ for some $0<s<r$. By the Euclidean metric, $d(x, y)<r$, so $y \in N_{r}(x)$, so $y \in E$. Thus, for every $t>0$, if we choose s to be any positive real such that $0<s<\min (r, t)$, then y is in the neighborhood of E, and since t is nonzero, $y \neq x$. Hence x is a limit point of E.

This is not true, in general, for a closed set E. Consider the set $E=\{0\}$, which is closed in \mathbb{R}^{2}. However, 0 is not a limit point of E, since in fact E has no limit points.

Problem (10). Let X be an infinite set. For $p \in X$ and $q \in X$, define

$$
d(p, q)= \begin{cases}1 & (p \neq q) \\ 0 & (p=q)\end{cases}
$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

Solution. (1). (d is symmetric) If $p=q$, then $d(p, q)=\left\{\begin{array}{ll}1 & (p \neq q) \\ 0 & (p=q)\end{array}\right.$. If $q=p$, then $d(q, p)=\left\{\begin{array}{ll}1 & (q \neq p) \\ 0 & (q=p)\end{array}=\left\{\begin{array}{ll}1 & (p \neq q) \\ 0 & (p=q)\end{array}=d(q, p)\right.\right.$.
(2). (d is positive semidefinite) Since d can take on values of either 0 or 1 , $d(p, q) \geq 0$ since $1 \geq 0$ and $0 \geq 0$.

Claim 1.1. $d(p, q)=0 \Longleftrightarrow p=q$.
Proof. (\Longrightarrow) : Suppose $d(p, q)=0$. Suppose for contradiction that $p \neq q$. Then $d(p, q)=1 \neq 0$, a contradiction. got 'em!
(\Longleftarrow) : Suppose that $p=q$. Then $d(p, q)=0$.
(3). (triangle inequality) We want to show that $d(x, z) \leq d(x, y)+d(y, z)$. Suppose that $x=z$. Then $d(x, z)=0$. By $(2), d(x+y) \geq 0$ and $d(y, z) \geq 0$. Hence $d(x, y)+d(y, z) \geq 0=d(x, z)$, as desired.

Suppose now that $x \neq z$. Then $d(x, z)=1$. Consider y. If $x=y$, then $y \neq z$. Then $d(x, y)+d(y, z)=0+1=1 \geq 1=d(x, z)$. If $y=z$, then $y \neq x$. Then $d(x, y)+d(y, z)=1+0=1 \geq 1=d(x, z)$. If $x \neq y$ and $z \neq y$, then $d(x, y)+d(y, z)=1+1=2 \geq 1=d(x, z)$.

Consider any singleton set in this metric space, $\{x\}$. Consider the neighborhood $N_{\frac{1}{2}}(x)=\{x\} \subseteq\{x\}$. Since any set is a union of one-point sets, any subset
of the metric space is an open set. Every subset is the complement of a union of one-point sets; hence, every subset is closed. Hence, all subsets are both open and closed. All finite sets are definitely compact. Infinite sets are not necessarily compact-consider the covering defined by the union of open covers covering one point each. There's no way to reduce this to a finite subcover.

Problem (12). Let $K \subseteq \mathbb{R}^{1}$ consist of 0 and the numbers $1 / n$, for $n=1,2,3, \ldots$. Prove that K is compact without the Heine-Borel theorem.

Solution. First, K is bounded above by 2 . To see this, suppose there's some $x \in K$ where $x>2$. Then $x=1 / n$ for some natural n, so $1 / n>2$, so $1>2 n$ so $n<1 / 2$, so n must equal 0 , a contradiction. Second, K is bounded below by 0 via a similar argument. Hence, $K \subseteq[0,2]$. We proved in class that any closed interval in \mathbb{R} is compact, so $[0,2]$ is compact. We showed in Problem 5 that K has exactly one limit point, which is 0 ; furthermore, $0 \in K$, so K is closed. By Theorem 2.35 in Rudin, every closed subset of a compact set is compact. Hence, K is compact.

Problem (14). Give an example of an open cover of the segment $(0,1)$ which has no finite subcover.

Solution. Take the open cover $\cup_{n=1}^{\infty}\left(\frac{1}{n}, 1\right)$. It is definitely a cover, since for any $k \in(0,1), k=1 / r$ for some $r>1$. Take any $n>r$, so $1 / n<1 / r<k$, so $(1 / n, 1) \ni k$. However, no finite subset of the open cover covers all of $(0,1)$, since if it is finite, there is a maximal n, so consider any $m \in(0,1)$ such that $m<\frac{1}{n}$, which is not covered by the subcover.

Problem (22). A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^{k} is separable.

Solution. Consider the set $K=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{i} \in \mathbb{Q} \forall i\right\}$. Clearly K is countable, since the rationals are countable, and K is a subset of \mathbb{R}^{k}. Thus, suffices to show that K is dense in \mathbb{R}^{k}; i.e., every point in \mathbb{R}^{k} is either a limit point of K, or a point in K. To do this, it suffices to show that for a point $x \in \mathbb{R}^{k}$, any neighborhood of x has a point in K in it. Let $x=\left(s_{1}, s_{2}, s_{3}, \ldots, s_{k}\right)$ where $s_{i} \in \mathbb{R} \forall i$. We want to show that $\forall r>0$, exists $s \in K$ such that $d(s, x)<r$. Take some $m<\frac{r}{\sqrt{k}}$. By density or the rationals in the reals, choose some rational k_{i} 's such that $s_{i}<k_{i}<s_{i}+m$. Let $s=\left(k_{1}, k_{2}, \ldots, k_{k}\right)$. Then $d(s, x)<\sqrt{\left(s_{1}-s_{1}-m\right)^{2}+\left(s_{2}-s_{2}-m\right)^{2}+\ldots+\left(s_{k}-s_{k}-m\right)^{2}}=\sqrt{k m^{2}}=$
$m \sqrt{k}<\frac{r}{\sqrt{k}} \sqrt{k}=r$, so there exists some $s \in K$ such that $d(s, x)<r$, as desired.

Problem (24). Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable. Hint: Fix $\delta>0$, and pick $x_{1} \in X$. Having chosen $x_{1}, \ldots, x_{j} \in X$, choose $x_{j+1} \in X$, if possible, so that $d\left(x_{i}, x_{j+1}\right) \geq \delta$ for $i=1, \ldots, j$. Show that this process must stop after a finite number of steps, and that X can therefore be covered by finitely many neighborhoods of radius δ. Take $\delta=1 / n, n \in \mathbb{N}^{+}$, and consider the centers of the corresponding neighborhoods.

Proof. Let's follow the hint and show that this process stops. Suppose this process never stops; in other words, we can always find a point in X that is greater than δ away from any set of points in X. Then consider the neighborhood $N_{\delta / 2}(x)$ around any point x in the set. By construction, it contains no points in the set other than x; hence it is not a limit point. Since the choice of x is arbitrary, the set has no limit points, but since it is infinite, that is a contradiction. Hence, the process stops at some point, and we have constructed a finite cover of X via finitely many neighborhoods of radius δ. Consider the centers of the corresponding neighborhoods for $\delta=1 / n$ where $n \in \mathbb{N}^{+}$(forming a cover of X). Any $x \in X$ is in the neighborhood of one of those centers for some large $n>\frac{1}{\delta}$, so the it is within a distance δ of the center, so it is a limit point of the centers, and hence the set of centers of the neighborhoods is dense in X.

[^0]: ${ }^{1}$ Man, we use this set in every example.

