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Problem (6). Let E′ be the set of all limit points of a set E. Prove that E′ is
closed. Prove that E and Ē have the same limit points. (Recall that Ē = E∪E′.)
Do E and E′ always have the same limit points?

Solution. First, let’s prove that E′ is closed. To do that, consider some point
x that is a limit point of E′. We need to show that x ∈ E′. Since x is a limit
point of E′, ∀ε > 0 such that Nε(x) intersects non-trivially with E′. Consider
a point in this intersection, call it y. If y = x, then x ∈ E′, so we’re done.
Thus assume y 6= x. Since y is a limit point of E, ∀δ > 0, Nδ(y) intersects
non-trivially with E. Consider a point in this intersection, call it z. For x
to be a limit point of E, ∀r > 0, there must be a point z ∈ E such that
d(x, z) < r. But if we choose ε = δ = r/3, then by the triangle inequality,
d(x, z) ≤ d(x, y) + d(y, z) < δ + ε = 2r/3 < r, so x is a limit point of E, so
x ∈ E′.

Now, let’s prove that E and Ē have the same limit points. By definition,
any limit point of E is also a limit point of Ē. Thus, it suffices to show that all
limit points of Ē are limit points of E. Consider some limit point x of Ē. Then
for any ε > 0, there is some y ∈ Ē such that d(x, y) < ε. By definition of union,
either y ∈ E or y ∈ E′. In the former case, x is a limit point of E, so we are
done. In the latter case, for any δ > 0, there is some z ∈ E such that d(y, z) < δ.
We want to show that x is a limit point of E; namely, that for all r > 0, we can
find a point z in E such that d(x, z) < r. Let ε = δ = r/3. Then by the triangle
inequality, d(x, z) ≤ d(x, y) + d(y, z) < δ + ε = 2r/3 < r, so x is a limit point of
E.

Suppose E and E′ have the same limit points. The limit points of E are just
E′. So for E and E′ to have the same limit points, the limit points of E′ must
be E′. We know that E′ is closed, so all its limit points are in E′; however, we
also need to show that every x ∈ E′ is a limit point for E′. This is definitely not
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true in general–consider the set { 1
n | n ∈ N}1. Its limit point is {0}, but its set

of limit points clearly has no limit points.

Problem (7). Let A1, A2, A3, . . . be subsets of a metric space.

(a) If Bn = ∪ni=1Ai, prove that Bn = ∪ni=1Ai, for n = 1, 2, 3, . . . ...
(b) If B = ∪∞

i=1Ai, prove that B̄ ⊇ ∪∞
i=1Ai.

Show, by an example, that this inclusion can be proper.

Lemma 1
B′
n = ∪ni=1A

′
i.

Proof. Essentially, what we are trying to show here is that (∪ni=1Ai)′ = ∪ni=1A
′
i.

First, let’s show that (∪ni=1Ai)′ ⊇ ∪ni=1A
′
i. Suffices to show that for each k

from 1 to n, A′
k ⊂ (∪ni=1Ai)′, since if each of them is a subset, then their union

would also be a subset. But clearly this is true, since the limit points of a set are
the limit points of any larger set containing the set. Thus (∪ni=1Ai)′ ⊇ ∪ni=1A

′
i.

Now, all we need to show is that (∪ni=1Ai)′ ⊆ ∪ni=1A
′
i. We can do this via

induction; clearly it’s true for the n = 1 case. Now suppose that (∪ni=1Ai)′ ⊆
∪ni=1A

′
i; we want to show that (∪ni=1Ai ∪ An++)′ ⊆ ∪ni=1A

′
i ∪ A′

n++. We can
show the contrapositive by taking some x /∈ ∪ni=1A

′
i ∪ A′

n++. Then there is a
neighborhood Nr(x) such that (∪ni=1A

′
i) ∩ Nr(x) ⊆ {x}, and a neighborhood

Ns(x) such that A′
n++ ∩Ns(x) ⊆ {x}. Since neighborhoods are open sets and

the union of open sets is an open set, Nr(x)∩Ns(x) gives a neighborhood Nt(x)
around x. Then definitely Nt(x) ∩ (∪ni=1Ai ∪An++) = {x}, so x is not a limit
point for (∪ni=1Ai ∪An++) and thus is not in (∪ni=1Ai ∪An++)′. This closes the
induction, so we are done.

Solution. (a). Bn = Bn ∪ B′
n = ∪ni=1Ai ∪ B′

n = ∪ni=1Ai ∪ ∪ni=1A
′
i, which by

rearrangement equals ∪ni=1(Ai ∪A′
i) = ∪ni=1Ai.

(b). By definition, B ⊇ Ai for all i ∈ N+; using part (a), B ⊇ Ai for all
i ∈ N+; combining the two, we get that B ⊇ ∪∞

i=1Ai.
For the last part of the question, consider Ai = {qi}, where qi is the ith

rational number enumerated via a bijection f : N→ Q. Then B = Q, so B = R,
whereas ∪ni=1Ai = ∪ni=1qi = ∪ni=1qi = Q. So clearly B ) A.

1Man, we use this set in every example.
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Problem (8). Is every point of every open set E ⊆ R2 a limit point of E?
Answer the same question for closed sets of R2.

Solution. Consider some point x = (x1, y1) in an open set E. By definition x
is an interior point; that is, ∃r > 0 such that Nr(x) ⊆ E. Consider the point
y = (x1 + s, y1) for some 0 < s < r. By the Euclidean metric, d(x, y) < r, so
y ∈ Nr(x), so y ∈ E. Thus, for every t > 0, if we choose s to be any positive
real such that 0 < s < min (r, t), then y is in the neighborhood of E, and since t
is nonzero, y 6= x. Hence x is a limit point of E.

This is not true, in general, for a closed set E. Consider the set E = {0},
which is closed in R2. However, 0 is not a limit point of E, since in fact E has
no limit points.

Problem (10). Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =
{

1 (p 6= q)
0 (p = q).

Prove that this is a metric. Which subsets of the resulting metric space are
open? Which are closed? Which are compact?

Solution. (1). (d is symmetric) If p = q, then d(p, q) =
{

1 (p 6= q)
0 (p = q) . If q = p,

then d(q, p) =
{

1 (q 6= p)
0 (q = p) =

{
1 (p 6= q)
0 (p = q) = d(q, p).

(2). (d is positive semidefinite) Since d can take on values of either 0 or 1,
d(p, q) ≥ 0 since 1 ≥ 0 and 0 ≥ 0.

Claim 1.1. d(p, q) = 0 ⇐⇒ p = q.

Proof. ( =⇒ ): Suppose d(p, q) = 0. Suppose for contradiction that p 6= q. Then
d(p, q) = 1 6= 0, a contradiction. got ’em!

(⇐= ): Suppose that p = q. Then d(p, q) = 0.

(3). (triangle inequality) We want to show that d(x, z) ≤ d(x, y) + d(y, z).
Suppose that x = z. Then d(x, z) = 0. By (2), d(x + y) ≥ 0 and d(y, z) ≥ 0.
Hence d(x, y) + d(y, z) ≥ 0 = d(x, z), as desired.

Suppose now that x 6= z. Then d(x, z) = 1. Consider y. If x = y, then
y 6= z. Then d(x, y) + d(y, z) = 0 + 1 = 1 ≥ 1 = d(x, z). If y = z, then y 6= x.
Then d(x, y) + d(y, z) = 1 + 0 = 1 ≥ 1 = d(x, z). If x 6= y and z 6= y, then
d(x, y) + d(y, z) = 1 + 1 = 2 ≥ 1 = d(x, z).

Consider any singleton set in this metric space, {x}. Consider the neighbor-
hood N 1

2
(x) = {x} ⊆ {x}. Since any set is a union of one-point sets, any subset
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of the metric space is an open set. Every subset is the complement of a union of
one-point sets; hence, every subset is closed. Hence, all subsets are both open
and closed. All finite sets are definitely compact. Infinite sets are not necessarily
compact—consider the covering defined by the union of open covers covering
one point each. There’s no way to reduce this to a finite subcover.

Problem (12). Let K ⊆ R1 consist of 0 and the numbers 1/n, for n = 1, 2, 3, . . ..
Prove that K is compact without the Heine-Borel theorem.

Solution. First, K is bounded above by 2. To see this, suppose there’s some
x ∈ K where x > 2. Then x = 1/n for some natural n, so 1/n > 2, so 1 > 2n so
n < 1/2, so n must equal 0, a contradiction. Second, K is bounded below by 0
via a similar argument. Hence, K ⊆ [0, 2]. We proved in class that any closed
interval in R is compact, so [0, 2] is compact. We showed in Problem 5 that
K has exactly one limit point, which is 0; furthermore, 0 ∈ K, so K is closed.
By Theorem 2.35 in Rudin, every closed subset of a compact set is compact.
Hence, K is compact.

Problem (14). Give an example of an open cover of the segment (0, 1) which
has no finite subcover.

Solution. Take the open cover ∪∞
n=1( 1

n , 1). It is definitely a cover, since for any
k ∈ (0, 1), k = 1/r for some r > 1. Take any n > r, so 1/n < 1/r < k, so
(1/n, 1) 3 k. However, no finite subset of the open cover covers all of (0, 1), since
if it is finite, there is a maximal n, so consider any m ∈ (0, 1) such that m < 1

n ,
which is not covered by the subcover.

Problem (22). A metric space is called separable if it contains a countable dense
subset. Show that Rk is separable.

Solution. Consider the set K = {(a1, a2, . . . , ak) | ai ∈ Q ∀i}. Clearly K is
countable, since the rationals are countable, and K is a subset of Rk. Thus,
suffices to show that K is dense in Rk; i.e., every point in Rk is either a limit
point of K, or a point in K. To do this, it suffices to show that for a point
x ∈ Rk, any neighborhood of x has a point in K in it. Let x = (s1, s2, s3, . . . , sk)
where si ∈ R ∀i. We want to show that ∀r > 0, exists s ∈ K such that
d(s, x) < r. Take some m < r√

k
. By density or the rationals in the reals, choose

some rational ki’s such that si < ki < si + m. Let s = (k1, k2, . . . , kk). Then
d(s, x) <

√
(s1 − s1 −m)2 + (s2 − s2 −m)2 + . . .+ (sk − sk −m)2 =

√
km2 =
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m
√
k < r√

k

√
k = r, so there exists some s ∈ K such that d(s, x) < r, as

desired.

Problem (24). Let X be a metric space in which every infinite subset has a limit
point. Prove that X is separable. Hint: Fix δ > 0, and pick x1 ∈ X. Having
chosen x1, . . . , xj ∈ X, choose xj+1 ∈ X, if possible, so that d(xi, xj+1) ≥ δ for
i = 1, . . . , j. Show that this process must stop after a finite number of steps, and
that X can therefore be covered by finitely many neighborhoods of radius δ. Take
δ = 1/n, n ∈ N+, and consider the centers of the corresponding neighborhoods.

Proof. Let’s follow the hint and show that this process stops. Suppose this
process never stops; in other words, we can always find a point in X that is
greater than δ away from any set of points in X. Then consider the neighborhood
Nδ/2(x) around any point x in the set. By construction, it contains no points
in the set other than x; hence it is not a limit point. Since the choice of x is
arbitrary, the set has no limit points, but since it is infinite, that is a contradiction.
Hence, the process stops at some point, and we have constructed a finite cover
of X via finitely many neighborhoods of radius δ. Consider the centers of the
corresponding neighborhoods for δ = 1/n where n ∈ N+ (forming a cover of X).
Any x ∈ X is in the neighborhood of one of those centers for some large n > 1

δ ,
so the it is within a distance δ of the center, so it is a limit point of the centers,
and hence the set of centers of the neighborhoods is dense in X.


