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Problem (1). Prove that a metric space X is connected iff it cannot be written
as the union of two disjoint non-empty open sets.

Solution. ( =⇒ ): Suppose a metric space X is connected. We want to show
that X cannot be written as the union of two disjoint non-empty open sets.
Suppose for contradiction that it can be written as the union of two disjoint
non-empty open sets; i.e., X = A ∪ B, where A 6= ø, B 6= ø, and A ∩ B = ø.
Since A and B are disjoint and X = A ∪ B, B = Ac. Since A is open, B is
therefore both closed and open in X. Similarly, since A is the complement of B,
A is also both open and closed in X. Since A is closed, A = A; similarly, B = B.
Since A ∩B = ø, we get that A ∩B = ø, and A ∩B = ø. Hence A and B are
separated sets, but X = A ∪B, hence X is not connected, a contradiction. got
’em!

( ⇐= ): Suppose a metric space X cannot be written as the union of two
disjoint non-empty open sets. We want to show that X is a connected metric
space. We will show the contrapositive: if X is not a connected metric space,
then it can be written as the union of two disjoint non-empty open sets. Thus,
suppose X is not connected. We want to show that X can be written as the
union of two disjoint non-empty open sets. By the definition of connectedness, X
can be written as a union of two nonempty separated sets. Thus, let X = A∪B
where A,B are nonempty, and A ∩B and A ∩B are both empty. Clearly A and
B are disjoint, since A ⊆ A and B ⊆ B; by definition they are both nonempty.
Thus suffices to show that A and B are open. Suppose A is not open. Since A,B
are disjoint and X = A ∪ B, B = Ac in X. Hence B is not closed. Hence its
closure is nonempty. Since A is the complement of B, we can find some z ∈ B′

such that z ∈ A. But z ∈ B′, so z ∈ B. Hence z ∈ A ∩B, a contradiction. got
’em!
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Problem (2). x is a boundary point of A if it belongs to A ∩X −A. Suppose
X is connected. Prove that every ø 6= A ( X has a boundary point.

Solution. Consider some nonempty A ( X. Then we know that X − A is the
complement of A, and since A 6= X, X −A = Ac is nonempty.

Claim 0.1. A and Ac are not separated.

Proof. Suppose for contradiction that A and Ac are separated. Then X = A∪Ac,
so X is a union of two nonempty separated sets. Thus X is not connected, a
contradiction. got ’em!

Since A and Ac are not separated, at least one of the following two statements
is false:

1. A ∩Ac = ø
2. A ∩Ac = ø

This splits the problem up nicely into two cases.
Case I ( 1 is false): In this case, A ∩ Ac is nonempty; that is, there is

something in A that is also in the closure of the complement of A. Hence,
A ∩X −A is nonempty. Since A ⊆ A, A ∩X −A is nonempty as well. Thus A
has a boundary point.

Case II ( 2 is false): In this case, A ∩ Ac is nonempty, that is, there is
something in X − A that is also in the closure of A. Hence A ∩ X − A is
nonempty. But X − A ⊆ X −A, so A ∩X −A is nonempty as well. Thus A,
once again, has a boundary point, and as are done.

Problem (3). Prove carefully that R2 is not a (countable) union of sets Si,
i = 1, 2, . . . with each Si being a subset of some straight line Li in R2.

Solution. Consider the unit circle S1 in R2. We know that S1 contains uncount-
ably many points. (To see this, consider the two-dimensional stereographic
projection from S1 onto the line y = −1. This bijectively maps every point from
the circle, except for one, onto R1. Hence the cardinality of S1 is the same as
that of R1; hence, the number of points in the unit circle is uncountable.) Now,
consider some subset Sk for k ∈ N. Since Sk is a straight line, it intersects S1

in zero, one, or two (i.e., a finite number) of points. Since there is a countable
number of Sk’s, and since we showed on a previous homework that N× N ≈ N,
all the Si’s together only intersect countably many points on the circle. If the
union of the Si’s were to be all of R2, it would surely cover every point in S1,
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which we showed it does not. Hence R2 is not a countable union of subsets of
straight lines in R2.

Problem (4). Prove that the set of real numbers can be written as the union of
uncountably many pairwise disjoint subsets, each of which is uncountable.

Solution. Since |R2| = |R|, there exists a bijection f : R→ R× R. This induces
the canonical equivalence relation on R: a ∼ b ⇐⇒ f(a) = f(b). Then consider
the inverse map f from R × R → R. Let g(a) = {x ∈ R | ∃y ∈ R s.t. f(x) =
(y, a)}. Then f−1(R, a) = g(a). So R = ∪a∈Rg(a), where all the g(a)’s are
disjoint since f is a bijection, and each one is definitely uncountable (because of
surjectivity), and we sum over uncountably many of them.

Problem (5). Let S be a subset of Rn with the distance function d(x, y) =
((x1 − y1)2 + · · ·+ (xn − yn)2)1/2 so that (S, d |S×S) is a metric space.

(a) Given y ∈ S, is E = {x ∈ S | d(x, y) ≥ r} a closed set in S?
(b) Is the set E in part (a) contained in the closure of {x ∈ S | d(x, y) > r} in

S?

Solution. (a). Yes. To show that E is closed in S, it suffices to show that
Ec = {x ∈ S | d(x, y) < r} is open in S. Let’s fix a point y. Consider the
neighborhood Nr(y) ∈ Rn; we know that Nr(y) is an open subset of Rn. Hence
Ec = S ∩Nr(y). By Theorem 2.30 in Rudin, Ec is open; hence, E is closed.

(b).

Problem (6). (a) Suppose that K and F are subsets of R2 with K closed and
bounded and F closed. Prove that if K ∩F = ø, then d(K,F ) > 0. Recall
that d(K,F ) = inf{d(x, y) | x ∈ K, y ∈ F}.

(b) Is (a) true if K is just closed? Prove your assertion.

Solution. (a). Assume for contradiction that d(K,F ) = 0; in other words,
inf{d(x, y) | x ∈ K, y ∈ F} = 0. By the Heine-Borel Theorem, K is compact.
Since inf{d(x, y)} = 0, we can find some sequence {xi} where each xn ∈ K,
{yn} where each yn ∈ F , such that d(xi, yi) converges to 0. Since {xn} ⊆ K

and K is compact, we can find some subset F ⊆ In such that {xi}i∈F converges
to some x∗ ∈ K. Consider this x∗. Since d(xi, yi) = 0, then ∀ε > 0, ∃i ∈ N s.t.
d(xi, yi) < ε; by compactness, this becomes d(x∗, yi) < ε. Since each yi ∈ F , x∗

is a limit point of F . Since F is closed, x∗ ∈ F . But x∗ ∈ K by compactness.
Hence K ∩ F 6= ø, a contradiction. got ’em!
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(b). This is false. Consider the closed sets F = {(n, 1/n) | n ≥ 1, n ∈ N}, and
K = {(n, 0) | n ≥ 1, n ∈ N}1. The distance between K and F can get arbitrarily
small, but F and K will never intersect.

Problem (7). Let X be a complete metric space with metric d. Let Y ⊆ X.
Prove that Y is closed in X iff Y with the metric d � Y is complete.

Solution. ( =⇒ ): suppose that Y is closed inX. We want to show that (Y, d � Y )
is complete. Consider some Cauchy sequence {yn}n∈N. We have two cases:

Case I (yn eventually becomes constant for all n > m for some m ∈ N): since
it eventually becomes constant, {yn} converges to some y∗, but since that y∗ is
an element of the sequence, y∗ ∈ Y , so Y is complete.

Case II (yn does not become constant): since it never becomes constant but
still converges, yn must converge to a limit point y∗ of Y (since we can always
find a point in {yn} that’s arbitrarily close to what it converges to, and yi ∈ Y
∀i by the completeness of X). Since Y is closed, y∗ ∈ Y ; thus Y is complete.

(⇐= ): Suppose Y is complete under the metric d restricted to it. Take some
limit point y∗ ∈ Y . By Theorem 3.2(d) in Rudin, there is a sequence {yn} in
Y that converges to y∗. Since Y is complete, y∗ ∈ Y . Hence Y is closed.

Problem (8.R3.21). Prove the following analogue of Theorem 3.10(b): If
{En} is a sequence of closed and bounded sets in a complete metric space X, if
En ⊇ En+1, and if

lim
n→∞

diam En = 0,

then ∩∞1 En consists of exactly one point.

Solution. Since the intersection is an intersection of nonempty closed sets, the
intersection is nonempty so x∗ can exist. Now suppose ∩∞1 En has two points
in it. Then for any arbitrarily large n, diam En > 0. Then the limit does not
converge, a contradiction. Hence the intersection contains exactly one point.

Problem (8.R3.22). Suppose X is a complete metric space, and {Gn} is a
sequence of dense open subsets of X. Prove Baire’s theorem, namely, that ∩∞1 Gn
is not empty. (In fact, it is dense in X.) Hint: Find a shrinking sequence of
neighborhoods En such that En ⊆ Gn, and apply Exercise 21.

1They are definitely closed—consider the complement; it is R2 with some points removed,
but the points are all distance > 1 apart, so it’s open.
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Solution. Let’s find this sequence. Choose some x1 ∈ G1. Since G1 is open, we
can find some ε > 0 such that Nε(x) ⊆ G1. In addition, Nε/2(x1) ( Nε(x1) ⊆ G1;
moreover, by definition of limit points, we have that Nε/2(x1) ( Nε/2(x1) ( G1.
Now consider G2. Since its closure is all of X and x1 ∈ G1 ⊆ X, x1 is in G2

(or is a limit point). By Rudin, we can find a δ > 0 where δ < ε such that
x2 ∈ Nδ(x1). In particular, x2 ∈ Nε/2(x1). Similarly construct the neighborhood
Nδ/2(x2). We thus get the chain

. . . ( Ni(xi) ( Ni(xi) ( . . . ( Nγ(x3) ( Nγ/2(x3) ( Nδ/2(x2) ( Nδ/2(x2) ( Nε/2(x1) ( Nε/2(x1)

Considering just the chain of closed sets, (which are all bounded), we know
from the previous exercise that their intersection contains exactly one point. But
if there’s exactly one point in each of the neighborhoods, then that point must
be in each Gi, and hence in their intersection.

Problem (11). Let Y be a complete countable metric space. Prove that there
is a point y ∈ Y such that {y} is open.

Solution. Note that a stronger statement of the Baire category theorem: a
non-empty complete metric space, or any of its subsets with nonempty interior,
is not the countable union of nowhere-dense sets2. Since Y is countable, we can
enumerate each point as yn where n ∈ In. Consider the sets {yn} for all n—
assume for contradiction that none of them are open. Hence they would all have
nonempty interior (since they are closed), but Y = ∪∞i=1{yn}, a contradiction.
got ’em!

2Source: ¸

https://en.wikipedia.org/wiki/Baire_category_theorem

