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Problem (1). If
∑

an converges, and if {bn} is monotonic and bounded, prove
that

∑
anbn converges.

Solution. Let B be the upper bound of {|bn|}. Since
∑

an converges, ∀ε > 0,
∃N such that ∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ ≤ ε

B
⇐⇒ (∀n ≥ m ≥ N .)

⇐⇒

∣∣∣∣∣
n∑

k=m

ak ·B

∣∣∣∣∣ ≤ ε =⇒

=⇒

∣∣∣∣∣
n∑

k=m

ak · bk

∣∣∣∣∣ ≤ ε (Since B is an upper bound)

which shows that
∑

anbn converges.

Problem (2). Prove the arithmetic and geometric means inequality,
√

uw ≤ u+w
2

(for u, w ≥ 0), and use this to show that e
x+y

2 ≤ ex+ey

2 for all x, y.

Solution. We’ll need a small claim first.

Claim 0.1. Let a, b ≥ 0. Then a ≤ b if an only if a2 ≤ b2.

Proof. This claim is true from properties of order on the reals, as proven in Tao
and earlier homeworks.

Now, we prove AM-GM:
√

uw ≤ u + w

2 ⇐⇒

uw ≤
(

u + w

2

)2
⇐⇒ (By Claim 0.1)

uw ≤ u2 + 2uw + w2

22 ⇐⇒

2
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uw ≤ u2

4 + w2

4 + uw

2 ⇐⇒

0 ≤ u2

4 −
uw

2 + w2

4 ⇐⇒

0 ≤
(u

2 −
w

2

)2
.

The last statement is always true since squares are always nonnegative, so
√

uw ≤ u+w
2 .

Now let u = ex and w = ey. Then we get that

e
x+y

2 = (ex+y) 1
2

=
√

ex+y

=
√

exey

=
√

uw

≤ u + w

2 (By AM-GM)

= ex + ey

2
as desired.

Problem (3). Prove that the exponential function is convex, meaning that if
x ≤ y and t ∈ [0, 1] then etx+(1−t)y ≤ tex + (1− t)ey.

Solution. Essentially, what we’re going to do is we’ll prove that at the midpoint
between x and y, the exponential function is less than the line connecting the
points (x, ex) and (y, ey); we’ll continue doing that iteratively, and then we’ll
use the density of these midpoints in the interval [x, y] to show it for all points
in the interval.

Claim 0.2. For t = 1
2 , this holds.

Proof. We want to show that e
1
2 x+(1− 1

2 )y ≤ 1
2 ex +(1− 1

2 )ey. This is algebraically
equivalent to showing that e

x+y
2 ≤ ex+ey

2 , which is true by Problem 2.

Claim 0.3. This is true for all t in the form t = k
2n , where k, n ∈ N.

Proof. Fix k; we prove this by induction on n.
Base case (n = 0): we want to show that this holds for t = k

2 . However, it is
given that t ∈ [0, 1], so k ∈ {0, 1, 2}.

Case I (k = 0): in this case, t = 0, so we want to show that ey ≤ ey, which is
trivially true.
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Case II (k = 2): in this case, t = 1, so we want to show that ex ≤ ex, which
is trivially true.

Case III (k = 1): in this case, t = 1
2 , which is true by Claim 0.2.

Inductive step: suppose this is true for t = k
2n . We want to show that this is

true for t′ = k
2n+1 . Observe that t′ is the midpoint of ( k−1

2 )
2n and ( k+1

2 )
2n . So let

x′ = ( k−1
2 )

2n and y = ( k+1
2 )

2n . Relative to x′ and y′, t′ = 1
2 , so by Claim 0.2, the

inequality holds at t′ = k
2n+1 , which closes the induction.

Now, for any s ∈ [0, 1], we can find some sequence {tn}, where each ti is of the
form ki

2ni
, such that s = sup {tn}. Thus the inequality esx+(1−s)y ≤ sex+(1−s)ey

holds for all points x, y, where x ≤ y and s ∈ [0, 1], as desired.

Problem (4). Fix b > 1, y > 0, and prove that there is a unique real x such
that bx = y.

Solution. We will follow the proof outline suggested in the book, which ultimately
reduces to proving the following seven claims, which we shall do.

Claim 0.4. For any positive integer n, bn − 1 ≥ n(b− 1).

Proof. We prove this by induction on n.
Base case (n = 1): we want to show that b1 − 1 ≥ 1(b− 1). This is true since

b1 − 1 = b− 1 = 1(b− 1).
Inductive step: suppose bn − 1 ≥ n(b + 1). Then we get that

bn+1 − 1 = bn · b− 1

≥ (n(b− 1) + 1) · b− 1 (By the IH)

= (nb− n + 1) · b− 1

= nb2 − nb + b− 1

= nb(b− 1) + (b− 1)

= (nb + 1)(b− 1)

≥ (n + 1)(b− 1) (Since b > 1)

which completes the induction.

Claim 0.5. b− 1 ≥ n(b1/n − 1).

Proof. This is a direct consequence of Claim 0.4.

Claim 0.6. If t > 1 and n > (b− 1)/(t− 1), then b1/n < t.
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Proof. Suppose t > 1. Then we have that

n > (b− 1)/(t− 1) =⇒

n > n(b1/n − 1)/(t− 1) =⇒ (By Claim 0.5)

1 > (b1/n − 1)/(t− 1) =⇒ (Since n ≥ 1)

t− 1 > b1/n − 1 =⇒ (Since t− 1 > 0)

t > b1/n.

Claim 0.7. If w is such that bw < y, then bw+(1/n) < y for sufficiently large n.

Proof. Let t = y ·b−w. For n sufficiently large, we can get that n > (b−1)/(t−1).
Then since t > 1, using Claim 0.6 we get that bw+(1/n) = bwb1/n < bwt =
bw · y · b−w = y.

Claim 0.8. If bw > y, then bw−(1/n) > y for sufficiently large n.

Proof. Since bw > y, bw/y > 1. Let t = bw/y. By Claim 0.6, for sufficiently
large n, we get that bwy−1 > b1/n. Multiplying both sides by b−1/ny, we get
that bw−(1/n) > y, as desired.

Claim 0.9. Let A be the set of all w such that bw < y, and show that x = sup A

satisfies bx = y.

Proof. We now by trichotomy that exactly one of bx > y, bx < y, or bx = y is
true.

Case I (bx > y): by Claim 0.8, choose some n such that bx > bx−(1/n) > y.
Thus x− (1/n) is an upper bound of A, but it is smaller than x, which gives a
contradiction. got ’em!

Case II (bx < y): by Claim 0.7, choose some n such that y > bx+(1/n) > bx.
But now x is not an upper bound for A, which gives a contradiction. got ’em!

Hence bx = y must be true.

Claim 0.10. Prove that this x is unique.

Proof. This is true by the uniqueness of suprema.

By Claims 0.9 and 0.10, we proved that the logarithm of y to the base b

exists and is unique for reals b > 1, y > 0.
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Problem (5). Determine for each of the following series whether or not it
converges.

(a)
∑∞

n=2
1

[n+(−1)n]2 .
(b)

∑
n≥1

n!
nn .

(c)
∑∞

n=2
nlog2 n

(log2 n)n .
(d)

∑
n≥2

1
(log2 n)log2 n .

(e)
∑

n≥1
(−1)nn!

2n .

Solution. (a). Observe that the terms of this series are either of the form 1
(n−1)2

or 1
(n+1)2 . Hence, ∑ 1

[n + (−1)n]2 ≤
∑ 1

(n− 1)2

≤ 1
n3/2

where the last series converges by the p-series test. Hence,
∑∞

n=2
1

[n+(−1)n]2

converges.
(b). Observe that

lim
n→∞

∣∣∣∣ (n + 1)!
(n + 1)(n+1) ·

nn

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)nn

(n + 1)(n+1)

∣∣∣∣
= lim

n→∞

∣∣∣∣ nn

(n + 1)n

∣∣∣∣
= elimn→∞ n log n−n log(n+1)

= e−1 = 1
e

< 1.

Hence, by the ratio test, the sequence converges absolutely, since limn→∞

∣∣∣an+1
an

∣∣∣ <

1.
(c). By the Cauchy condensation test, the series converges if and only if the

series
∑∞

n=2 2n (2n)log2(2n)

(log2(2n))(2n) . We get that the latter series is equivalent to
∞∑

n=2
2n (2n)log2(2n)

(log2(2n))(2n) =
∞∑

n=2
2n (2n)n

(n)(2n)

=
∞∑

n=2

(2n)n+1

n2n .

Applying the ratio test to this series, we get
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lim
n→∞

(2(n+1))n+2

(n + 1)2(n+1)

(2n)n+1

n2n

= lim
n→∞

4n+1n2n

(n + 1)−2n+1

= 0

Hence, the larger series converges. By the comparison test, our series con-
verges as well.

(d). We use the Cauchy condensation test once again—our series converges
if and only if the series

∑∞
n=2 2n 1

(log2 2n)(log2 2n) converges. The latter series is
simply

∑∞
n=2

2n

nn . But for all n ≥ 4, 2 ≤ n/2, so 2n

nn ≤ (n/2)n

nn = 1
2n , so by the

comparison test, the latter series converges; thus, our series converges as well.
(e). Observe that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)(n + 1)!
2n+1

2n

n!

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n + 1)
2

∣∣∣∣ =∞ > 1

so by the ratio test, this series diverges.

Problem (6). Let {an}n≥1 be a decreasing sequence of non-negative numbers.
Suppose

∑
n≥1 an converges. Prove that limn→∞ nan = 0.

Solution. Since {an} is positive and nonincreasing, we can apply the Cauchy
condensation test: that is,

∑
n≥1 an converges if and only if

∑
n≥1 2na2n con-

verges. To show the desired result, we will prove the contrapositive of the
statement: namely, if limn→∞ nan 6= 0, then

∑
n≥1 2na2n diverges. So suppose

limn→∞ nan 6= 0. For contradiction, suppose
∑

n≥1 2na2n converges. In a con-
vergent series

∑
xn, {xn} must converge to 0. Hence limn→∞ 2na2n = 0. But

this is a contradiction, since we said limn→∞ nan 6= 0, which clearly fails in the
case where we look at the terms in positions of powers of two.

Problem (7). Prove that
∑

n≥1
1

n(n+1) = 1.

Solution. Suffices to show that the sequence of partial sums {sn} converges to 1,
where sn =

∑k
n=1

1
n(n+1) . We showed in class that for any monotone increasing

sequence that is bounded above, its supremum is the limit. Thus, we will show
several things:

Claim 0.11. {sn} is monotone increasing.
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Proof. Observe that sn+1 = an+1 + sn = 1
(n+1)(n+2) + sn. Since 1

(n+1)(n+2) > 0,
sn+1 > sn.

Claim 0.12. {sn} is bounded above.

Proof. Suppose not. Then the sequence of partial sums of an diverges, so
∑

an

diverges, so
∑

n≥1
1

n(n+1) diverges. However, this is a contradiction, since
∑

an

converges by a comparison with the series
∑ 1

n2 .

Claim 0.13. sup sn = 1.

Proof. We need to show two things:

1. 1 is an upper bound of {sn}; and
2. 1 is the least upper bound of {sn}.

Proof of 1 : Observe that sn =
∑n

k=1 an =
∑n

k=1
1

k(k+1) =
∑n

k=1
1
k −

1
k+1 =

n
n+1 . Suppose 1 were not an upper bound of {sn}. Then we can find some k

such that sk > 1. But this implies that k
k+1 > 1 ⇐⇒ k > k + 1, which is a

contradiction. got ’em!
Proof of 2 : Suppose ∃z < 1 that is an upper bound for {sn}. Choose some

r ∈ N such that r > z
1−z , which exists by the Archimedean property. Then

sr = r
r+1 >

z
1−z

1− z
1−z

=
z

1−z
1−z
1−z−

z
1−z

=
z

1−z
1

1−z

= z, a contradiction. got ’em!

By the three claims above, the partial sums of
∑

n≥1
1

n(n+1) converge to 1,
so the series converges to 1 as well.

Problem (8). Prove that
∑

n≥1
n−1
2n+1 = 1

2 , and use this to calculate
∑

n≥1
n

2n .

Lemma 1∑∞
n=1

n
2n+1 = 1.

Proof. Let sk =
∑k

n=1
n

2n+1 . We claim that sk = 2−k−1(−k + 2k+1 − 2). We
show this by induction:

Base case (k = 1):
k∑

n=1

n

2n+1 =
1∑

n=1

n

2n+1

= 1
21+1

= 1
4
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= 2−2

= 2−2(1)

= 2−1−1(1)

= 2−1−1(−1 + 4− 2)

= 2−1−1(−1 + 22 − 2)

= 2−1−1(1 + 21+1 − 2)

= 2−1−1(−1 + 21+1 − 2)

= 2−k−1(−k + 2k+1 − 2).

Inductive step: suppose that sk = 2−k−1(−k + 2k+1 − 2). Then

sk+1 = sk + ak+1

= 2−k−1(−k + 2k+1 − 2) + ak+1

= 2−k−1(−k + 2k+1 − 2) + k + 1
2k+2

= 2−k−1(−k + 2k+1 − 2) + 2−k−2(k + 1)

= 2−k−1(−k + 2k+1 − 2) + 2−k−1(2−1(k + 1))

= 2−k−1(−k + 2k+1 − 2 + 2−1k + 2−1)

= 2−k−2(−2k + 2k+2 − 4 + k + 1)

= 2−k−2(−k + 2k+2 − 3)

= 2−(k+1)−1(−k + 2k+2 − 3)

= 2−(k+1)−1(−k − 1 + 2k+2 − 2)

= 2−(k+1)−1(−(k + 1) + 2k+2 − 2)

= 2−(k+1)−1(−(k + 1) + 2(k+1)+1 − 2)

which closes the induction.
Hence,

∑∞
n=1

n
2n+1 = limk→∞

∑k
n=1

n
2n+1 = limk→∞ 2−(k+1)−1(−(k + 1) +

2(k+1)+1 − 2) = 1.

Lemma 2∑∞
n=1

( 1
2n+1

)
= 1

2 .

Proof. Let sk =
∑k

n=1
( 1

2n+1

)
. We claim that sk = 2k−1

2k+1 .
We show this by induction on k.
Base case (k = 1):
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k∑
n=1

(
1

2n+1

)
=

1∑
n=1

(
1

2n+1

)
= 1

21+1

= 2− 1
2k+1

= 21 − 1
2k+1

= 2k − 1
2k+1 .

Inductive case: suppose that sk = 2k−1
2k+1 . Then we have that

sk+1 = sk + ak+1

= 2k − 1
2k+1 + 1

2(k+1)+1

= 2k − 1
2k+1 + 1/2

2k+1

= 2k − 1 + 1/2
2k+1

= 2k − 1/2
2k+1

= 2(2k − 1/2)
2(2k+1)

= 2k+1 − 1
2(k+1)+1

which closes the induction.
Hence

∑∞
n=1

1
2n+1 = limk→∞

∑k
n=1

1
2n+1 = limk→∞

2k+1−1
2(k+1)+1 = 1/2.

Solution. Observe that
∑k

n=1
n−1
2n+1 =

∑k
n=1( n

2n − n+1
2n+1 ), which conveniently

telescopes to 1
2 −

k+1
2k+1 . Letting k go to infinity, we get that

∑∞
n=1

n−1
2n+1 =

limk→∞
∑k

n=1
n−1
2n+1 = limk→∞

( 1
2 −

k+1
2k+1

)
= 1

2 . Now we know that
∞∑

n=1

( n

2n

)
=
∞∑

n=1

(
n− 1
2n+1 + n + 1

2n+1

)

= 1
2 +

∞∑
n=1

(
n + 1
2n+1

)

= 1
2 +

∞∑
n=1

( n

2n+1

)
+
∞∑

n=1

(
1

2n+1

)

= 1
2 + 1 +

∞∑
n=1

(
1

2n+1

)
(By Claim 1)
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= 1
2 + 1 + 1

2 (By Claim 2)

= 2.

Problem (9). A metric space is called sequentially compact, or said to have the
Bolzano-Weierstraß property, if every sequence has a convergent subsequence. A
metric space is totally bounded if for every ε > 0 the space can be covered by
finitely many open balls of radius ε. Prove that the following are equivalent:

(a) X is compact.
(b) X is sequentially compact.
(c) X is complete and totally bounded.

Solution. (a =⇒ c): suppose X is compact. Consider the following open cover:
G = ∪x∈XNε(x). It is definitely open, since each neighborhood is open, and the
union of open sets is open; it is a cover, since each point is, at the very least, in
the neighborhood centered around it. Since X is compact, there exists a finite
subcover of G. Hence, X can be covered by finitely many open balls of radius ε.
But since our choice of an open cover was independent of our choice of ε > 0,
this is true ∀ε > 0; hence X is totally bounded. Moreover, compactness is a
stronger condition on metric spaces than completeness, so X is complete1.

(a =⇒ b): suppose X is compact. Let {xn} be a sequence of points in
X. We want to show that {xn} has a convergent subsequence. To do this, let
E = {xn | n ∈ N}. We have two natural cases—either E is finite or infinite.

Case I (E is finite): in this case, then ∃x∗ ∈ E repeated infinitely many
times. So take the subsequence of repetitions of x∗, and we get the obviously
convergent subsequence {nk}∞k=1, where xnk

= x∗.
Case II (E is infinite): If E is infinite, then E has a limit point x∗ (by the

compactness of X). Since x∗ is a limit point, define nk by recursion on k as
follows:

(1) set n1 = 1;
(2) assuming nk has been defined, since x∗ is a limit point of E, there are

infinitely many points in E within distance 1
k+1 of x∗. In particular, we can find

1Obviously, if every sequence in X has a convergent subsequence that converges to a point
in X, then every Cauchy sequence in X has a convergent subsequence that converges to a point
in X; but if a subsequence of a Cauchy sequence converges to X, then the Cauchy sequence
converges to X as well. Hence every Cauchy sequence converges to a point in X, so X is
complete.
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some xm ∈ E such that d(xm, x∗) < 1
k+1 and m > nk (since there are infinitely

many, and nk is finite). So set nk+1 equal to such an m.
Then {xnk

} is a subsequence of {xn}, and (∀k > 1) d(x∗, xnk
) < 1

k . Hence
{xnk

} converges to x∗.
Thus X is sequentially compact.

(c =⇒ a): suppose X is complete and totally bounded. We want to show
that X is compact—that is, every sequence {xn} in X has a subsequence that
converges to a point in X. So let’s take some sequence {xn} in X. Since X is
complete, every Cauchy sequence converges to a point in X; hence, suffices to
find a subsequence of {xn} that is Cauchy. Let E = {xn | n ∈ N}. We have two
cases about the finiteness of E:

Case I (E is finite): in this case, some point in {xn} must repeat infinitely
many times. Thus, take the subsequence of {xn} that is just that point repeated
over and over. Clearly it is Cauchy, so we’re done.

Case II (E is infinite): observe that since X is totally bounded, the space
can be covered by finitely many open balls of radius ε. Consider the covering
by the minimal number of open balls for any given ε. Since E is infinite and
there are finitely many open balls, we can find an open ball Nε(x) of radius ε

that contains infinitely many points in E by the infinite pigeonhole principle.
Let {bn}ε be a subsequence of {an} that contains just the infinitely many points
in Nε(x). We claim that {bn}ε converges to x. Well, ∀ε > 0, the maximum
distance between x and any bi is less than ε by the definition of an open ball.
Hence {bn}ε converges. But x is in the neighborhood surrounding it, and since
ε can be arbitrarily small, and the finite open cover is minimal, x must be in X.

Thus, every sequence in X has a subsequence that converges to a point in X.

(b =⇒ c): suppose X is sequentially compact. First, let’s show that this
implies that X is complete. Take some Cauchy sequence {xn} in X. We want
to show that it converges in X. Since X is sequentially compact, {xn} has a
convergent subsequence {xnk

}. Let x∗ be a limit point of {xnk
}. Fix ε > 0. We

want to show that {xn} converges to the same limit as {xnk
}; hence, we need

some N ∈ N such that (∀n ≥ N), d(xn, x∗) < ε.
Since {xnk

} converges to x∗, we have an N1 such that ∀k ≥ N1, d(xnk
, x∗) <

ε/2. Since {xn} is Cauchy, we have some N2 such that ∀n, m ≥ N2, d(xn, xm) <
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ε/2. Take N = max (N1, N2)2. Fix n ≥ N ≥ N2. We will show that d(xn, x∗) <

ε.
Let k be large enough that k ≥ N1 and nk ≥ N2. Then d(xnk

, x∗) < ε/2. But
since k, nk ≥ N2, d(xnk

, xn) < ε/2, so by the triangle inequality, d(xn, x∗) < ε.
Hence X is complete.

Now, we want to show that X is totally bounded—that is, for every ε > 0,
X can be covered by finitely many open balls of radius ε. Suppose it isn’t. Then
∃ε > 0 for which there is no finite covering of X with open balls of size ε. So
construct a sequence as follows: let x1 ∈ X. Since Nε(x1) ( X3, we can find
some x2 such that d(x1, x2) > ε. Recursively, given we already have the points
{x1, x2, . . . , xn}, choose the point xn+1 to be such that d(xi, xn+1) > ε ∀i. We
know such a point exists, for if it didn’t, then the n neighborhoods of radius ε

around then xi’s would form a finite cover of X. But the sequence {xn} is very
not Cauchy, so it has no convergent subsequences. But then X is not sequentially
compact, a contradiction. got ’em!

2In fact, N = N2 works.
3Necessarily proper—otherwise we would have a finite cover of open balls with radius ε, so

the space would be totally bounded, which we’re assuming it isn’t.


