Analysis HW \#9

Dyusha Gritsevskiy

February 2019

Problem (1). If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.

Solution. Let B be the upper bound of $\left\{\left|b_{n}\right|\right\}$. Since $\sum a_{n}$ converges, $\forall \varepsilon>0$, $\exists N$ such that

$$
\begin{array}{rlr}
\left|\sum_{k=m}^{n} a_{k}\right| \leq \frac{\varepsilon}{B} \Longleftrightarrow & (\forall n \geq m \geq N .) \\
\Longleftrightarrow\left|\sum_{k=m}^{n} a_{k} \cdot B\right| \leq \varepsilon \Longrightarrow & \\
\Longrightarrow\left|\sum_{k=m}^{n} a_{k} \cdot b_{k}\right| \leq \varepsilon & & \text { (Since } B \text { is an upper bound) })
\end{array}
$$

which shows that $\sum a_{n} b_{n}$ converges.
Problem (2). Prove the arithmetic and geometric means inequality, $\sqrt{u w} \leq \frac{u+w}{2}$ (for $u, w \geq 0$), and use this to show that $e^{\frac{x+y}{2}} \leq \frac{e^{x}+e^{y}}{2}$ for all x, y.

Solution. We'll need a small claim first.
Claim 0.1. Let $a, b \geq 0$. Then $a \leq b$ if an only if $a^{2} \leq b^{2}$.
Proof. This claim is true from properties of order on the reals, as proven in Tao and earlier homeworks.

Now, we prove AM-GM:

$$
\begin{align*}
\sqrt{u w} & \leq \frac{u+w}{2} \Longleftrightarrow \\
u w & \leq\left(\frac{u+w}{2}\right)^{2} \Longleftrightarrow \tag{ByClaim0.1}\\
u w & \leq \frac{u^{2}+2 u w+w^{2}}{2^{2}} \Longleftrightarrow
\end{align*}
$$

$$
\begin{aligned}
u w & \leq \frac{u^{2}}{4}+\frac{w^{2}}{4}+\frac{u w}{2} \Longleftrightarrow \\
0 & \leq \frac{u^{2}}{4}-\frac{u w}{2}+\frac{w^{2}}{4} \Longleftrightarrow \\
0 & \leq\left(\frac{u}{2}-\frac{w}{2}\right)^{2}
\end{aligned}
$$

The last statement is always true since squares are always nonnegative, so $\sqrt{u w} \leq \frac{u+w}{2}$.

Now let $u=e^{x}$ and $w=e^{y}$. Then we get that

$$
\begin{align*}
e^{\frac{x+y}{2}} & =\left(e^{x+y}\right)^{\frac{1}{2}} \\
& =\sqrt{e^{x+y}} \\
& =\sqrt{e^{x} e^{y}} \\
& =\sqrt{u w} \\
& \leq \frac{u+w}{2} \tag{ByAM-GM}\\
& =\frac{e^{x}+e^{y}}{2}
\end{align*}
$$

as desired.
Problem (3). Prove that the exponential function is convex, meaning that if $x \leq y$ and $t \in[0,1]$ then $e^{t x+(1-t) y} \leq t e^{x}+(1-t) e^{y}$.

Solution. Essentially, what we're going to do is we'll prove that at the midpoint between x and y, the exponential function is less than the line connecting the points $\left(x, e^{x}\right)$ and (y, e^{y}); we'll continue doing that iteratively, and then we'll use the density of these midpoints in the interval $[x, y]$ to show it for all points in the interval.

Claim 0.2. For $t=\frac{1}{2}$, this holds.
Proof. We want to show that $e^{\frac{1}{2} x+\left(1-\frac{1}{2}\right) y} \leq \frac{1}{2} e^{x}+\left(1-\frac{1}{2}\right) e^{y}$. This is algebraically equivalent to showing that $e^{\frac{x+y}{2}} \leq \frac{e^{x}+e^{y}}{2}$, which is true by Problem 2.

Claim 0.3. This is true for all t in the form $t=\frac{k}{2^{n}}$, where $k, n \in \mathbb{N}$.
Proof. Fix k; we prove this by induction on n.
Base case $(n=0)$: we want to show that this holds for $t=\frac{k}{2}$. However, it is given that $t \in[0,1]$, so $k \in\{0,1,2\}$.

Case I $(k=0)$: in this case, $t=0$, so we want to show that $e^{y} \leq e^{y}$, which is trivially true.

Case II $(k=2)$: in this case, $t=1$, so we want to show that $e^{x} \leq e^{x}$, which is trivially true.

Case III $(k=1)$: in this case, $t=\frac{1}{2}$, which is true by Claim 0.2 .
Inductive step: suppose this is true for $t=\frac{k}{2^{n}}$. We want to show that this is true for $t^{\prime}=\frac{k}{2^{n+1}}$. Observe that t^{\prime} is the midpoint of $\frac{\left(\frac{k-1}{2}\right)}{2^{n}}$ and $\frac{\left(\frac{k+1}{2}\right)}{2^{n}}$. So let $x^{\prime}=\frac{\left(\frac{k-1}{2}\right)}{2^{n}}$ and $y=\frac{\left(\frac{k+1}{2}\right)}{2^{n}}$. Relative to x^{\prime} and $y^{\prime}, t^{\prime}=\frac{1}{2}$, so by Claim 0.2, the inequality holds at $t^{\prime}=\frac{k}{2^{n+1}}$, which closes the induction.

Now, for any $s \in[0,1]$, we can find some sequence $\left\{t_{n}\right\}$, where each t_{i} is of the form $\frac{k_{i}}{2^{n_{i}}}$, such that $s=\sup \left\{t_{n}\right\}$. Thus the inequality $e^{s x+(1-s) y} \leq s e^{x}+(1-s) e^{y}$ holds for all points x, y, where $x \leq y$ and $s \in[0,1]$, as desired.

Problem (4). Fix $b>1, y>0$, and prove that there is a unique real x such that $b^{x}=y$.

Solution. We will follow the proof outline suggested in the book, which ultimately reduces to proving the following seven claims, which we shall do.
Claim 0.4. For any positive integer $n, b^{n}-1 \geq n(b-1)$.
Proof. We prove this by induction on n.
Base case $(n=1)$: we want to show that $b^{1}-1 \geq 1(b-1)$. This is true since $b^{1}-1=b-1=1(b-1)$.

Inductive step: suppose $b^{n}-1 \geq n(b+1)$. Then we get that

$$
\begin{array}{rlr}
b^{n+1}-1 & =b^{n} \cdot b-1 \\
& \geq(n(b-1)+1) \cdot b-1 \\
& =(n b-n+1) \cdot b-1 \\
& =n b^{2}-n b+b-1 \\
& =n b(b-1)+(b-1) \\
& =(n b+1)(b-1) \\
& \geq(n+1)(b-1) \quad & \\
& \\
& & \\
& \text { Sy the } \mathrm{IH})
\end{array}
$$

which completes the induction.
Claim 0.5. $b-1 \geq n\left(b^{1 / n}-1\right)$.
Proof. This is a direct consequence of Claim 0.4.
Claim 0.6. If $t>1$ and $n>(b-1) /(t-1)$, then $b^{1 / n}<t$.

Proof. Suppose $t>1$. Then we have that

$$
\begin{array}{rlr}
n & >(b-1) /(t-1) \Longrightarrow & \\
n & >n\left(b^{1 / n}-1\right) /(t-1) \Longrightarrow & (\text { By Claim 0.5) } \\
1 & >\left(b^{1 / n}-1\right) /(t-1) \Longrightarrow & (\text { Since } n \geq 1) \\
t-1 & >b^{1 / n}-1 \Longrightarrow & \\
t & >b^{1 / n} . &
\end{array}
$$

Claim 0.7. If w is such that $b^{w}<y$, then $b^{w+(1 / n)}<y$ for sufficiently large n.
Proof. Let $t=y \cdot b^{-w}$. For n sufficiently large, we can get that $n>(b-1) /(t-1)$. Then since $t>1$, using Claim 0.6 we get that $b^{w+(1 / n)}=b^{w} b^{1 / n}<b^{w} t=$ $b^{w} \cdot y \cdot b^{-w}=y$.

Claim 0.8. If $b^{w}>y$, then $b^{w-(1 / n)}>y$ for sufficiently large n.
Proof. Since $b^{w}>y, b^{w} / y>1$. Let $t=b^{w} / y$. By Claim 0.6, for sufficiently large n, we get that $b^{w} y^{-1}>b^{1 / n}$. Multiplying both sides by $b^{-1 / n} y$, we get that $b^{w-(1 / n)}>y$, as desired.

Claim 0.9. Let A be the set of all w such that $b^{w}<y$, and show that $x=\sup A$ satisfies $b^{x}=y$.

Proof. We now by trichotomy that exactly one of $b^{x}>y, b^{x}<y$, or $b^{x}=y$ is true.

Case I $\left(b^{x}>y\right)$: by Claim 0.8, choose some n such that $b^{x}>b^{x-(1 / n)}>y$. Thus $x-(1 / n)$ is an upper bound of A, but it is smaller than x, which gives a contradiction. got 'em!

Case II $\left(b^{x}<y\right)$: by Claim 0.7, choose some n such that $y>b^{x+(1 / n)}>b^{x}$. But now x is not an upper bound for A, which gives a contradiction. got 'em!

Hence $b^{x}=y$ must be true.
Claim 0.10. Prove that this x is unique.
Proof. This is true by the uniqueness of suprema.
By Claims 0.9 and 0.10 , we proved that the logarithm of y to the base b exists and is unique for reals $b>1, y>0$.

Problem (5). Determine for each of the following series whether or not it converges.
(a) $\sum_{n=2}^{\infty} \frac{1}{\left[n+(-1)^{n}\right]^{2}}$.
(b) $\sum_{n \geq 1} \frac{n!}{n^{n}}$.
(c) $\sum_{n=2}^{\infty} \frac{n^{\log _{2} n}}{\left(\log _{2} n\right)^{n}}$.
(d) $\sum_{n \geq 2} \frac{1}{\left(\log _{2} n\right)^{\log _{2} n}}$.
(e) $\sum_{n \geq 1} \frac{(-1)^{n} n!}{2^{n}}$.

Solution. (a). Observe that the terms of this series are either of the form $\frac{1}{(n-1)^{2}}$ or $\frac{1}{(n+1)^{2}}$. Hence,

$$
\begin{aligned}
\sum \frac{1}{\left[n+(-1)^{n}\right]^{2}} & \leq \sum \frac{1}{(n-1)^{2}} \\
& \leq \frac{1}{n^{3 / 2}}
\end{aligned}
$$

where the last series converges by the p-series test. Hence, $\sum_{n=2}^{\infty} \frac{1}{\left[n+(-1)^{n}\right]^{2}}$ converges.
(b). Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{(n+1)^{(n+1)}} \cdot \frac{n^{n}}{n!}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1) n^{n}}{(n+1)^{(n+1)}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n^{n}}{(n+1)^{n}}\right| \\
& =e^{\lim _{n \rightarrow \infty} n \log n-n \log (n+1)} \\
& =e^{-1}=\frac{1}{e}<1
\end{aligned}
$$

Hence, by the ratio test, the sequence converges absolutely, since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<$ 1.
(c). By the Cauchy condensation test, the series converges if and only if the series $\sum_{n=2}^{\infty} 2^{n} \frac{\left(2^{n}\right)^{\log _{2}\left(2^{n}\right)}}{\left(\log _{2}\left(2^{n}\right)\right)^{\left(2^{n}\right)}}$. We get that the latter series is equivalent to

$$
\begin{aligned}
\sum_{n=2}^{\infty} 2^{n} \frac{\left(2^{n}\right)^{\log _{2}\left(2^{n}\right)}}{\left(\log _{2}\left(2^{n}\right)\right)^{\left(2^{n}\right)}} & =\sum_{n=2}^{\infty} 2^{n} \frac{\left(2^{n}\right)^{n}}{(n)^{\left(2^{n}\right)}} \\
& =\sum_{n=2}^{\infty} \frac{\left(2^{n}\right)^{n+1}}{n^{2^{n}}}
\end{aligned}
$$

Applying the ratio test to this series, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{\left(2^{(n+1)}\right)^{n+2}}{(n+1)^{(n+1)}}}{\frac{\left(2^{n}\right)^{n+1}}{n^{2^{n}}}} & =\lim _{n \rightarrow \infty} 4^{n+1} n^{2^{n}}(n+1)^{-2^{n+1}} \\
& =0
\end{aligned}
$$

Hence, the larger series converges. By the comparison test, our series converges as well.
(d). We use the Cauchy condensation test once again-our series converges if and only if the series $\sum_{n=2}^{\infty} 2^{n} \frac{1}{\left(\log _{2} 2^{n}\right)^{\left(\log _{2} 2^{n}\right)}}$ converges. The latter series is simply $\sum_{n=2}^{\infty} \frac{2^{n}}{n^{n}}$. But for all $n \geq 4,2 \leq n / 2$, so $\frac{2^{n}}{n^{n}} \leq \frac{(n / 2)^{n}}{n^{n}}=\frac{1}{2^{n}}$, so by the comparison test, the latter series converges; thus, our series converges as well.
(e). Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|(-1) \frac{(n+1)!}{2^{n+1}} \frac{2^{n}}{n!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1)}{2}\right|=\infty>1
\end{aligned}
$$

so by the ratio test, this series diverges.
Problem (6). Let $\left\{a_{n}\right\}_{n \geq 1}$ be a decreasing sequence of non-negative numbers. Suppose $\sum_{n \geq 1} a_{n}$ converges. Prove that $\lim _{n \rightarrow \infty} n a_{n}=0$.

Solution. Since $\left\{a_{n}\right\}$ is positive and nonincreasing, we can apply the Cauchy condensation test: that is, $\sum_{n \geq 1} a_{n}$ converges if and only if $\sum_{n \geq 1} 2^{n} a_{2^{n}}$ converges. To show the desired result, we will prove the contrapositive of the statement: namely, if $\lim _{n \rightarrow \infty} n a_{n} \neq 0$, then $\sum_{n \geq 1} 2^{n} a_{2^{n}}$ diverges. So suppose $\lim _{n \rightarrow \infty} n a_{n} \neq 0$. For contradiction, suppose $\sum_{n \geq 1} 2^{n} a_{2^{n}}$ converges. In a convergent series $\sum x_{n},\left\{x_{n}\right\}$ must converge to 0 . Hence $\lim _{n \rightarrow \infty} 2^{n} a_{2^{n}}=0$. But this is a contradiction, since we said $\lim _{n \rightarrow \infty} n a_{n} \neq 0$, which clearly fails in the case where we look at the terms in positions of powers of two.

Problem (7). Prove that $\sum_{n \geq 1} \frac{1}{n(n+1)}=1$.
Solution. Suffices to show that the sequence of partial sums $\left\{s_{n}\right\}$ converges to 1 , where $s_{n}=\sum_{n=1}^{k} \frac{1}{n(n+1)}$. We showed in class that for any monotone increasing sequence that is bounded above, its supremum is the limit. Thus, we will show several things:
Claim 0.11. $\left\{s_{n}\right\}$ is monotone increasing.

Proof. Observe that $s_{n+1}=a_{n+1}+s_{n}=\frac{1}{(n+1)(n+2)}+s_{n}$. Since $\frac{1}{(n+1)(n+2)}>0$, $s_{n+1}>s_{n}$.

Claim 0.12. $\left\{s_{n}\right\}$ is bounded above.
Proof. Suppose not. Then the sequence of partial sums of a_{n} diverges, so $\sum a_{n}$ diverges, so $\sum_{n \geq 1} \frac{1}{n(n+1)}$ diverges. However, this is a contradiction, since $\sum a_{n}$ converges by a comparison with the series $\sum \frac{1}{n^{2}}$.

Claim 0.13. $\sup s_{n}=1$.
Proof. We need to show two things:

1. 1 is an upper bound of $\left\{s_{n}\right\}$; and
2. 1 is the least upper bound of $\left\{s_{n}\right\}$.

Proof of (1): Observe that $s_{n}=\sum_{k=1}^{n} a_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{k+1}=$ $\frac{n}{n+1}$. Suppose 1 were not an upper bound of $\left\{s_{n}\right\}$. Then we can find some k such that $s_{k}>1$. But this implies that $\frac{k}{k+1}>1 \Longleftrightarrow k>k+1$, which is a contradiction. got 'em!

Proof of (2): Suppose $\exists z<1$ that is an upper bound for $\left\{s_{n}\right\}$. Choose some $r \in \mathbb{N}$ such that $r>\frac{z}{1-z}$, which exists by the Archimedean property. Then $s_{r}=\frac{r}{r+1}>\frac{\frac{z}{1-z}}{1-\frac{z}{1-z}}=\frac{\frac{z}{1-z}}{\frac{1-z}{1-z}-\frac{z}{1-z}}=\frac{\frac{z}{1-z}}{\frac{1}{1-z}}=z$, a contradiction. got 'em!

By the three claims above, the partial sums of $\sum_{n \geq 1} \frac{1}{n(n+1)}$ converge to 1 , so the series converges to 1 as well.

Problem (8). Prove that $\sum_{n \geq 1} \frac{n-1}{2^{n+1}}=\frac{1}{2}$, and use this to calculate $\sum_{n \geq 1} \frac{n}{2^{n}}$.

Lemma 1

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}=1
$$

Proof. Let $s_{k}=\sum_{n=1}^{k} \frac{n}{2^{n+1}}$. We claim that $s_{k}=2^{-k-1}\left(-k+2^{k+1}-2\right)$. We show this by induction:

Base case ($k=1$):

$$
\begin{aligned}
\sum_{n=1}^{k} \frac{n}{2^{n+1}} & =\sum_{n=1}^{1} \frac{n}{2^{n+1}} \\
& =\frac{1}{2^{1+1}} \\
& =\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =2^{-2} \\
& =2^{-2}(1) \\
& =2^{-1-1}(1) \\
& =2^{-1-1}(-1+4-2) \\
& =2^{-1-1}\left(-1+2^{2}-2\right) \\
& =2^{-1-1}\left(1+2^{1+1}-2\right) \\
& =2^{-1-1}\left(-1+2^{1+1}-2\right) \\
& =2^{-k-1}\left(-k+2^{k+1}-2\right) .
\end{aligned}
$$

Inductive step: suppose that $s_{k}=2^{-k-1}\left(-k+2^{k+1}-2\right)$. Then

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =2^{-k-1}\left(-k+2^{k+1}-2\right)+a_{k+1} \\
& =2^{-k-1}\left(-k+2^{k+1}-2\right)+\frac{k+1}{2^{k+2}} \\
& =2^{-k-1}\left(-k+2^{k+1}-2\right)+2^{-k-2}(k+1) \\
& =2^{-k-1}\left(-k+2^{k+1}-2\right)+2^{-k-1}\left(2^{-1}(k+1)\right) \\
& =2^{-k-1}\left(-k+2^{k+1}-2+2^{-1} k+2^{-1}\right) \\
& =2^{-k-2}\left(-2 k+2^{k+2}-4+k+1\right) \\
& =2^{-k-2}\left(-k+2^{k+2}-3\right) \\
& =2^{-(k+1)-1}\left(-k+2^{k+2}-3\right) \\
& =2^{-(k+1)-1}\left(-k-1+2^{k+2}-2\right) \\
& =2^{-(k+1)-1}\left(-(k+1)+2^{k+2}-2\right) \\
& =2^{-(k+1)-1}\left(-(k+1)+2^{(k+1)+1}-2\right)
\end{aligned}
$$

which closes the induction.
Hence, $\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \frac{n}{2^{n+1}}=\lim _{k \rightarrow \infty} 2^{-(k+1)-1}(-(k+1)+$ $\left.2^{(k+1)+1}-2\right)=1$.

Lemma 2

$\sum_{n=1}^{\infty}\left(\frac{1}{2^{n+1}}\right)=\frac{1}{2}$.

Proof. Let $s_{k}=\sum_{n=1}^{k}\left(\frac{1}{2^{n+1}}\right)$. We claim that $s_{k}=\frac{2^{k}-1}{2^{k+1}}$.
We show this by induction on k.
Base case ($k=1$):

$$
\begin{aligned}
\sum_{n=1}^{k}\left(\frac{1}{2^{n+1}}\right) & =\sum_{n=1}^{1}\left(\frac{1}{2^{n+1}}\right) \\
& =\frac{1}{2^{1+1}} \\
& =\frac{2-1}{2^{k+1}} \\
& =\frac{2^{1}-1}{2^{k+1}} \\
& =\frac{2^{k}-1}{2^{k+1}}
\end{aligned}
$$

Inductive case: suppose that $s_{k}=\frac{2^{k}-1}{2^{k+1}}$. Then we have that

$$
\begin{aligned}
s_{k+1}=s_{k}+a_{k+1} & \\
& =\frac{2^{k}-1}{2^{k+1}}+\frac{1}{2^{(k+1)+1}} \\
& =\frac{2^{k}-1}{2^{k+1}}+\frac{1 / 2}{2^{k+1}} \\
& =\frac{2^{k}-1+1 / 2}{2^{k+1}} \\
& =\frac{2^{k}-1 / 2}{2^{k+1}} \\
& =\frac{2\left(2^{k}-1 / 2\right)}{2^{k\left(2^{k+1}\right)}} \\
& =\frac{2^{k+1}-1}{2^{(k+1)+1}}
\end{aligned}
$$

which closes the induction.
Hence $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \frac{1}{2^{n+1}}=\lim _{k \rightarrow \infty} \frac{2^{k+1}-1}{2^{(k+1)+1}}=1 / 2$.
Solution. Observe that $\sum_{n=1}^{k} \frac{n-1}{2^{n+1}}=\sum_{n=1}^{k}\left(\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}\right)$, which conveniently telescopes to $\frac{1}{2}-\frac{k+1}{2^{k+1}}$. Letting k go to infinity, we get that $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=$ $\lim _{k \rightarrow \infty} \sum_{n=1}^{k} \frac{n-1}{2^{n+1}}=\lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{k+1}{2^{k+1}}\right)=\frac{1}{2}$. Now we know that

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(\frac{n}{2^{n}}\right) & =\sum_{n=1}^{\infty}\left(\frac{n-1}{2^{n+1}}+\frac{n+1}{2^{n+1}}\right) \\
& =\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{n+1}{2^{n+1}}\right) \\
& =\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{n}{2^{n+1}}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{2^{n+1}}\right) \\
& =\frac{1}{2}+1+\sum_{n=1}^{\infty}\left(\frac{1}{2^{n+1}}\right) \tag{ByClaim1}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2}+1+\frac{1}{2} \\
& =2
\end{aligned}
$$

(By Claim 2)

Problem (9). A metric space is called sequentially compact, or said to have the Bolzano-Weierstraß property, if every sequence has a convergent subsequence. A metric space is totally bounded if for every $\varepsilon>0$ the space can be covered by finitely many open balls of radius ε. Prove that the following are equivalent:
(a) X is compact.
(b) X is sequentially compact.
(c) X is complete and totally bounded.

Solution. $(\mathrm{a} \Longrightarrow \mathrm{c})$: suppose X is compact. Consider the following open cover: $G=\cup_{x \in X} N_{\varepsilon}(x)$. It is definitely open, since each neighborhood is open, and the union of open sets is open; it is a cover, since each point is, at the very least, in the neighborhood centered around it. Since X is compact, there exists a finite subcover of G. Hence, X can be covered by finitely many open balls of radius ε. But since our choice of an open cover was independent of our choice of $\varepsilon>0$, this is true $\forall \varepsilon>0$; hence X is totally bounded. Moreover, compactness is a stronger condition on metric spaces than completeness, so X is complete ${ }^{1}$.
($\mathrm{a} \Longrightarrow \mathrm{b}$): suppose X is compact. Let $\left\{x_{n}\right\}$ be a sequence of points in X. We want to show that $\left\{x_{n}\right\}$ has a convergent subsequence. To do this, let $E=\left\{x_{n} \mid n \in \mathbb{N}\right\}$. We have two natural cases-either E is finite or infinite.

Case I (E is finite): in this case, then $\exists x^{*} \in E$ repeated infinitely many times. So take the subsequence of repetitions of x^{*}, and we get the obviously convergent subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$, where $x_{n_{k}}=x^{*}$.

Case II (E is infinite): If E is infinite, then E has a limit point x^{*} (by the compactness of X). Since x^{*} is a limit point, define n_{k} by recursion on k as follows:
(1) set $n_{1}=1$;
(2) assuming n_{k} has been defined, since x^{*} is a limit point of E, there are infinitely many points in E within distance $\frac{1}{k+1}$ of x^{*}. In particular, we can find

[^0]some $x_{m} \in E$ such that $d\left(x_{m}, x^{*}\right)<\frac{1}{k+1}$ and $m>n_{k}$ (since there are infinitely many, and n_{k} is finite). So set n_{k+1} equal to such an m.

Then $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$, and $(\forall k>1) d\left(x^{*}, x_{n_{k}}\right)<\frac{1}{k}$. Hence $\left\{x_{n_{k}}\right\}$ converges to x^{*}.

Thus X is sequentially compact.
$(\mathrm{c} \Longrightarrow \mathrm{a})$: suppose X is complete and totally bounded. We want to show that X is compact - that is, every sequence $\left\{x_{n}\right\}$ in X has a subsequence that converges to a point in X. So let's take some sequence $\left\{x_{n}\right\}$ in X. Since X is complete, every Cauchy sequence converges to a point in X; hence, suffices to find a subsequence of $\left\{x_{n}\right\}$ that is Cauchy. Let $E=\left\{x_{n} \mid n \in \mathbb{N}\right\}$. We have two cases about the finiteness of E :

Case I (E is finite): in this case, some point in $\left\{x_{n}\right\}$ must repeat infinitely many times. Thus, take the subsequence of $\left\{x_{n}\right\}$ that is just that point repeated over and over. Clearly it is Cauchy, so we're done.

Case II (E is infinite): observe that since X is totally bounded, the space can be covered by finitely many open balls of radius ε. Consider the covering by the minimal number of open balls for any given ε. Since E is infinite and there are finitely many open balls, we can find an open ball $N_{\varepsilon}(x)$ of radius ε that contains infinitely many points in E by the infinite pigeonhole principle. Let $\left\{b_{n}\right\}_{\varepsilon}$ be a subsequence of $\left\{a_{n}\right\}$ that contains just the infinitely many points in $N_{\varepsilon}(x)$. We claim that $\left\{b_{n}\right\}_{\varepsilon}$ converges to x. Well, $\forall \varepsilon>0$, the maximum distance between x and any b_{i} is less than ε by the definition of an open ball. Hence $\left\{b_{n}\right\}_{\varepsilon}$ converges. But x is in the neighborhood surrounding it, and since ε can be arbitrarily small, and the finite open cover is minimal, x must be in X.

Thus, every sequence in X has a subsequence that converges to a point in X.
$(\mathrm{b} \Longrightarrow \mathrm{c})$: suppose X is sequentially compact. First, let's show that this implies that X is complete. Take some Cauchy sequence $\left\{x_{n}\right\}$ in X. We want to show that it converges in X. Since X is sequentially compact, $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$. Let x^{*} be a limit point of $\left\{x_{n_{k}}\right\}$. Fix $\varepsilon>0$. We want to show that $\left\{x_{n}\right\}$ converges to the same limit as $\left\{x_{n_{k}}\right\}$; hence, we need some $N \in \mathbb{N}$ such that $(\forall n \geq N), d\left(x_{n}, x^{*}\right)<\varepsilon$.

Since $\left\{x_{n_{k}}\right\}$ converges to x^{*}, we have an N_{1} such that $\forall k \geq N_{1}, d\left(x_{n_{k}}, x^{*}\right)<$ $\varepsilon / 2$. Since $\left\{x_{n}\right\}$ is Cauchy, we have some N_{2} such that $\forall n, m \geq N_{2}, d\left(x_{n}, x_{m}\right)<$
$\varepsilon / 2$. Take $N=\max \left(N_{1}, N_{2}\right)^{2}$. Fix $n \geq N \geq N_{2}$. We will show that $d\left(x_{n}, x^{*}\right)<$ ε.

Let k be large enough that $k \geq N_{1}$ and $n_{k} \geq N_{2}$. Then $d\left(x_{n_{k}}, x^{*}\right)<\varepsilon / 2$. But since $k, n_{k} \geq N_{2}, d\left(x_{n_{k}}, x_{n}\right)<\varepsilon / 2$, so by the triangle inequality, $d\left(x_{n}, x^{*}\right)<\varepsilon$. Hence X is complete.

Now, we want to show that X is totally bounded-that is, for every $\varepsilon>0$, X can be covered by finitely many open balls of radius ε. Suppose it isn't. Then $\exists \varepsilon>0$ for which there is no finite covering of X with open balls of size ε. So construct a sequence as follows: let $x_{1} \in X$. Since $N_{\varepsilon}\left(x_{1}\right) \subsetneq X^{3}$, we can find some x_{2} such that $d\left(x_{1}, x_{2}\right)>\varepsilon$. Recursively, given we already have the points $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, choose the point x_{n+1} to be such that $d\left(x_{i}, x_{n+1}\right)>\varepsilon \forall i$. We know such a point exists, for if it didn't, then the n neighborhoods of radius ε around then x_{i} 's would form a finite cover of X. But the sequence $\left\{x_{n}\right\}$ is very not Cauchy, so it has no convergent subsequences. But then X is not sequentially compact, a contradiction. got 'em!

[^1]
[^0]: ${ }^{1}$ Obviously, if every sequence in X has a convergent subsequence that converges to a point in X, then every Cauchy sequence in X has a convergent subsequence that converges to a point in X; but if a subsequence of a Cauchy sequence converges to X, then the Cauchy sequence converges to X as well. Hence every Cauchy sequence converges to a point in X, so X is complete.

[^1]: ${ }^{2}$ In fact, $N=N_{2}$ works.
 ${ }^{3}$ Necessarily proper-otherwise we would have a finite cover of open balls with radius ε, so the space would be totally bounded, which we're assuming it isn't.

