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Problem (1). If > a,, converges, and if {b,} is monotonic and bounded, prove

that > apb, converges.

Solution. Let B be the upper bound of {|b,|}. Since > a,, converges, Ve > 0,
3N such that
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which shows that > a,b, converges. O
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Problem (2). Prove the arithmetic and geometric means inequality, /uw < “5*

T+

(for u, w > 0), and use this to show that e 7 < # for all =, y.

Solution. We’ll need a small claim first.

Claim 0.1. Let a,b > 0. Then a < b if an only if a? < b2.

Proof. This claim is true from properties of order on the reals, as proven in Tao

and earlier homeworks. O

Now, we prove AM-GM:
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The last statement is always true since squares are always nonnegative, so

+
Vuw < %
Now let u = e and w = e¥. Then we get that
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as desired. O

Problem (3). Prove that the exponential function is convex, meaning that if
x <yandtc[0,1] then e*+1=DY < e 4 (1 —t)ev.

Solution. Essentially, what we're going to do is we’ll prove that at the midpoint
between = and y, the exponential function is less than the line connecting the
points (z,e*) and (y,e¥); we’ll continue doing that iteratively, and then we’ll
use the density of these midpoints in the interval [z, y] to show it for all points

in the interval.

Claim 0.2. For t = %, this holds.

Proof. We want to show that ez t(l=3)y < %em +(1- %)ey. This is algebraically

¢"te’  which is true by Problem 2. O

equivalent to showing that e <
Claim 0.3. This is true for all ¢ in the form ¢t = 2%, where k, n € N.

Proof. Fix k; we prove this by induction on n.

Base case (n = 0): we want to show that this holds for ¢t = £. However, it is
given that t € [0, 1], so k € {0,1,2}.

Case I (k = 0): in this case, t = 0, so we want to show that e¥ < e¥, which is

trivially true.



Case IT (k = 2): in this case, t = 1, so we want to show that e < e*, which
is trivially true.

Case III (k = 1): in this case, t = %, which is true by Claim 0.2.

Inductive step: suppose this is true for t = 2% We want to show that this is

ko1 k1
true for ¢’ = 277% Observe that t' is the midpoint of (2%) and % So let
r_ (5 )

Z— and y = ~Z—. Relative to #’ and y/, ¢’ = 3, so by Claim 0.2, the

inequality holds at ¢’ = QH%, which closes the induction. O

X

Now, for any s € [0, 1], we can find some sequence {t, }, where each ¢; is of the

form £, such that s = sup {t,,}. Thus the inequality e>*+(1=9)¥ < se7+(1—s)e?

holds for all points x,y, where < y and s € [0, 1], as desired. O

Problem (4). Fix b > 1, y > 0, and prove that there is a unique real x such
that b* = y.
Solution. We will follow the proof outline suggested in the book, which ultimately
reduces to proving the following seven claims, which we shall do.
Claim 0.4. For any positive integer n, b — 1 > n(b—1).
Proof. We prove this by induction on n.

Base case (n = 1): we want to show that b! —1 > 1(b—1). This is true since
bl—1=b-1=1(b—1).

Inductive step: suppose b™ — 1 > n(b+ 1). Then we get that

v —1=0"b—1
>nb-1)+1)-b—1 (By the IH)

mb—n+1)-b—1
nb? —nb+b—1
nb(b—1)+ (b—1)
mb+1)(b—1)
>(n+1)(b-1) (Since b > 1)

which completes the induction. O
Claim 0.5. b — 1 > n(b*/™ —1).
Proof. This is a direct consequence of Claim 0.4. O

Claim 0.6. If t > 1 and n > (b—1)/(t — 1), then b*/" < .



Proof. Suppose t > 1. Then we have that

n>0b-1)/(t—1) =

n>nbY"—1)/(t—1) = (By Claim 0.5)

1>@0Y"=1)/t-1) = (Since n > 1)

t—1>b/" -1 = (Since t — 1 > 0)
t>bl/m,

O

Claim 0.7. If w is such that b < y, then b*+t(1/") < y for sufficiently large n.

Proof. Lett =y-b~*. For n sufficiently large, we can get that n > (b—1)/(t—1).
Then since ¢ > 1, using Claim 0.6 we get that pw+(1/7) = pwpl/n < pwi =
oYy - b7V =y O

Claim 0.8. If b > y, then b*~ (/™) > y for sufficiently large n.

Proof. Since b >y, b*/y > 1. Let t = b*/y. By Claim 0.6, for sufficiently
large n, we get that b®y~' > b1/™ Multiplying both sides by b='/"y, we get
that b¥~(1/") > 4 as desired. O

Claim 0.9. Let A be the set of all w such that b* < y, and show that x = sup A

satisfies 0 = y.

Proof. We now by trichotomy that exactly one of b* > y, b* < y, or b* =y is
true.

Case I (b* > y): by Claim 0.8, choose some n such that b* > p*~(1/7) > 4.
Thus z — (1/n) is an upper bound of A, but it is smaller than z, which gives a
contradiction. got ’em!

Case IT (b < 7): by Claim 0.7, choose some n such that y > b*+(1/7) > pz,
But now x is not an upper bound for A, which gives a contradiction. got ’em!

Hence b* = y must be true. O
Claim 0.10. Prove that this x is unique.
Proof. This is true by the uniqueness of suprema. O

By Claims 0.9 and 0.10, we proved that the logarithm of y to the base b

exists and is unique for reals b > 1, y > 0. O



Problem (5). Determine for each of the following series whether or not it

converges.

(a) 3nts W
(b) Yom 2
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Solution. (a). Observe that the terms of this series are either of the form ﬁ

or ﬁ Hence,
1 1
- < -
Z [n + (_1)71}2 — Z (Tl _ 1)2
< 1
= 3/2
where the last series converges by the p-series test. Hence, >, W
converges.
(b). Observe that
) (n+1)! n" ) (n+1)n"
lm |[—+F——| = lim | ————F——
n—o00 (fn, + 1)(”+1) n! n—oo (n + 1)("+1)
nn
= lim |———
— elimnﬁm nlog n—nlog(n+1)
1
= 671 = — < 1
e
Hence, by the ratio test, the sequence converges absolutely, since lim,, o a;—:l <
1.

(c). By the Cauchy condensation test, the series converges if and only if the

. gnylogz (2™)
series 00, 2n 2

Tom @)@ - We get that the latter series is equivalent to
2

> (2n)log2(2") 0 (2n)n
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Applying the ratio test to this series, we get



(2(n+1))n+2
o (n+1)2Y n+1, 2" —gnt1
e

=0

Hence, the larger series converges. By the comparison test, our series con-
verges as well.
(d). We use the Cauchy condensation test once again—our series converges

if and only if the series 7, Q”W converges. The latter series is
> :

simply >>7, 2" Butforalln>4,2< n/2, so 72% < %7%)7 = L so by the

nm — 2n

comparison test, the latter series converges; thus, our series converges as well.
(e). Observe that

1)!2m
lim |24 = gy [y D2
n—oo | a, n— o0 2n+l  pl
1
= lim (n+ )’:oo>1
n—oo
so by the ratio test, this series diverges. O

Problem (6). Let {a,}»>1 be a decreasing sequence of non-negative numbers.

Suppose Y -, a, converges. Prove that lim,,_, na, = 0.

Solution. Since {a,} is positive and nonincreasing, we can apply the Cauchy
condensation test: that is, > -, a, converges if and only if )~ -, 2"ag» con-
verges. To show the desired r_esult, we will prove the contrapo_sitive of the
statement: namely, if lim,, o na, # 0, then > -, 2"asn diverges. So suppose
lim,, 0 na, # 0. For contradiction, suppose Zn7>1 2™a9n converges. In a con-
vergent series Yz, {x,} must converge to 0. Hence lim,, o0 2"%ag» = 0. But
this is a contradiction, since we said lim,,_,~, na, # 0, which clearly fails in the

case where we look at the terms in positions of powers of two. O

Problem (7). Prove that ) 1.

1
n>1 n(nt+l) —

Solution. Suffices to show that the sequence of partial sums {s,} converges to 1,
where s, = Zszl m We showed in class that for any monotone increasing
sequence that is bounded above, its supremum is the limit. Thus, we will show

several things:

Claim 0.11. {s,} is monotone increasing.



Proof. Observe that s,41 = @pi1 + Sp = + 85,. Since m > 0,

(n+1)(n+2)
Sp+1 > Sn- O

Claim 0.12. {s,} is bounded above.

Proof. Suppose not. Then the sequence of partial sums of a,, diverges, so Y _ a,
diverges, so ), <, m diverges. However, this is a contradiction, since »_ a,,

converges by a comparison with the series ) n% O
Claim 0.13. sups,, = 1.

Proof. We need to show two things:

1. 1is an upper bound of {s,}; and
2. 1 is the least upper bound of {s,}.

Proofof@’ Observe that s, =Y ;_;an =Y 1, k(++1) =2k %_kfil =
Suppose 1 were not an upper bound of {s,}. Then we can find some k
>1 <= k>k+1, whichisa

n+1

such that s, > 1. But this implies that =5 +1

contradiction. got ’em!
Proof of @: Suppose 3z < 1 that is an upper bound for {s,,}. Choose some

r € N such that r > %, which exists by the Archimedean property. Then

E— = 112 = z, a contradiction. got ’em! O
1—2z 1—2

Z
— T 1—2 — 1
Sr = 2 T = =
z

—Z

By the three claims above, the partial sums of > converge to 1,

1
n>1 n(n+1)
so the series converges to 1 as well. O

Problem (8). Prove that >_, -, & 2=t = 1, and use this to calculate Y, - 2.

Lemma 1l
8] n —
Dop—1 zaeT = L.

Proof. Let s = ZIZ 1 gusr- We claim that s, = 27 b=l(—f 4 2F1 —2). We
show this by induction:
Base case (k = 1):
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_2—2
(1)
=2711(1)
=271 (-1+4-2)
=21 (—1+22-2)
e —1( 9l+1 _ 2)
— 91~ 1( 142141 _ 2)

=27 (4 2R —9).
Inductive step: suppose that s, = 27%~1(—k + 281 — 2). Then

Sk+1 = Sk T Qk+1
— 2—k‘—1(_k + 2]€+1 _ 2) + Qs

=2 k1= k+2’“+1—2)+%

=27 (k4 2F T —2) 27k 2 (k4 1)

=2 R (k2R —9) p27R (27 (k4 1))

=27 (kg 2bt —opolp 427
F=2(ok 4282 44 k1)

— 97k 4 ok+2 _3)

— o~ (kt1)=1(_p 4 ok+2 _ 3)

— 9= (k+1)-1 — 1+ ok+2 _ 2)

(=

(—k
-9~ (k+1)— 1( (k‘—|—1)+2k+2 2)
— 9~ (k+1) 1( (k+1)+2<k+1)+1 2)
which closes the induction.

Hence, 0% | 527 = limysoo Yor ) 57 = limyoo 27 FHD "1 (—(k + 1) +
2D+ _9) — 1. L

Lemma 2

fozl (zn%) = %

Proof. Let s = Zszl (54 ). We claim that s, = kﬂl.
We show this by induction on k.
Base case (k =1):
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Inductive case: suppose that s =

Sk+1 = Sk + Qk+1

which closes the induction.

foe) 1 . k 1
Hence D" 1 sapr = liMp o0 Dy garr
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221,2—111. Then we have that

2k 1
2k+1 + 2(k+1)+1

C2k—11)2

T 9k+1 9k+1
2F —141/2

T gkl

2k —1/2

T 9k+1

2(2F —1/2)
2(2k+1)
2k+1 -1

= 9k+1)+1

o ok+1_q
= limy 00 SRF1)+1

—1/2. O

Solution. Observe that Zﬁzl ot = 2221(2% — 241), which conveniently
telescopes to 1 — &L Letting k go to infinity, we get that > oo, 2=t =
limy s 0o Zi:l At = limg,o (5 — 224) = 3. Now we know that
= /n _ /n—-1 n+1
Z (27) - Z on+1 + on+1
n=1 n=1
I ~(n+1
=5+ (2n+1>
n=1
1 =~/ n [ 1
:§+Z<W>+Z <2n+1>
n=1 n=1
1 [ 1
=51+ > <2n+1 (By Claim 1)
n=1
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(By Claim 2)

N o=
N~

O

Problem (9). A metric space is called sequentially compact, or said to have the
Bolzano-Weierstrafy property, if every sequence has a convergent subsequence. A
metric space is totally bounded if for every € > 0 the space can be covered by

finitely many open balls of radius €. Prove that the following are equivalent:

(a) X is compact.
(b) X is sequentially compact.
(¢) X is complete and totally bounded.

Solution. (a = c): suppose X is compact. Consider the following open cover:
G = Uzex Nc(z). It is definitely open, since each neighborhood is open, and the
union of open sets is open; it is a cover, since each point is, at the very least, in
the neighborhood centered around it. Since X is compact, there exists a finite
subcover of GG. Hence, X can be covered by finitely many open balls of radius e.
But since our choice of an open cover was independent of our choice of £ > 0,
this is true Ve > 0; hence X is totally bounded. Moreover, compactness is a

stronger condition on metric spaces than completeness, so X is complete’.

(a = Db): suppose X is compact. Let {z,} be a sequence of points in
X. We want to show that {x,} has a convergent subsequence. To do this, let
E = {z,, | n € N}. We have two natural cases—either E is finite or infinite.

Case I (F is finite): in this case, then Ja* € E repeated infinitely many
times. So take the subsequence of repetitions of z*, and we get the obviously
convergent subsequence {ny}?2 ,, where z,, = z*.

Case II (E is infinite): If F is infinite, then F has a limit point z* (by the
compactness of X). Since z* is a limit point, define nj by recursion on k as
follows:

(1) set ny = 1;

(2) assuming ny has been defined, since x* is a limit point of E, there are

infinitely many points in F within distance of z*. In particular, we can find

1
k+1

LObviously, if every sequence in X has a convergent subsequence that converges to a point
in X, then every Cauchy sequence in X has a convergent subsequence that converges to a point
in X; but if a subsequence of a Cauchy sequence converges to X, then the Cauchy sequence
converges to X as well. Hence every Cauchy sequence converges to a point in X, so X is
complete.
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some z,, € E such that d(z,,,z*) < T}A and m > ny, (since there are infinitely
many, and ny is finite). So set nk41 equal to such an m.

Then {z,, } is a subsequence of {z,}, and (Vk > 1) d(z*,z,,) < +. Hence
{xn,} converges to x*.

Thus X is sequentially compact.

(¢ = a): suppose X is complete and totally bounded. We want to show
that X is compact—that is, every sequence {x,} in X has a subsequence that
converges to a point in X. So let’s take some sequence {z,} in X. Since X is
complete, every Cauchy sequence converges to a point in X; hence, suffices to
find a subsequence of {z,} that is Cauchy. Let E = {x,, | n € N}. We have two
cases about the finiteness of E:

Case I (E is finite): in this case, some point in {z,} must repeat infinitely
many times. Thus, take the subsequence of {x,} that is just that point repeated
over and over. Clearly it is Cauchy, so we’re done.

Case II (F is infinite): observe that since X is totally bounded, the space
can be covered by finitely many open balls of radius . Consider the covering
by the minimal number of open balls for any given €. Since F is infinite and
there are finitely many open balls, we can find an open ball N () of radius &
that contains infinitely many points in E by the infinite pigeonhole principle.
Let {b,}- be a subsequence of {a, } that contains just the infinitely many points
in N.(z). We claim that {b,}. converges to z. Well, Ve > 0, the maximum
distance between x and any b; is less than € by the definition of an open ball.
Hence {b, }. converges. But x is in the neighborhood surrounding it, and since
€ can be arbitrarily small, and the finite open cover is minimal, x must be in X.

Thus, every sequence in X has a subsequence that converges to a point in X.

(b = c): suppose X is sequentially compact. First, let’s show that this
implies that X is complete. Take some Cauchy sequence {z,} in X. We want
to show that it converges in X. Since X is sequentially compact, {z,} has a
convergent subsequence {x,, }. Let 2* be a limit point of {z,, }. Fix ¢ > 0. We
want to show that {z,} converges to the same limit as {z,, }; hence, we need
some N € N such that (Vn > N), d(z,,z*) < e.

Since {x,, } converges to z*, we have an Ny such that Vk > Ny, d(x,, ,2*) <
/2. Since {z,} is Cauchy, we have some Ny such that Vn,m > Na, d(xp, Tm) <
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/2. Take N = max (N1, N2)?. Fix n > N > Ny. We will show that d(x,,z*) <
€.

Let k be large enough that £ > Ny and ny > Na. Then d(z,,,2*) < £/2. But
since k,ny > Na, d(zp,,Tn) < £/2, so by the triangle inequality, d(x,,z*) < .
Hence X is complete.

Now, we want to show that X is totally bounded—that is, for every ¢ > 0,
X can be covered by finitely many open balls of radius €. Suppose it isn’t. Then
Je > 0 for which there is no finite covering of X with open balls of size €. So
construct a sequence as follows: let z; € X. Since N.(z1) € X*, we can find
some xo such that d(z1,z2) > €. Recursively, given we already have the points
{z1,x2,..., 2}, choose the point x,1 to be such that d(x;, z,41) > € Vi. We
know such a point exists, for if it didn’t, then the n neighborhoods of radius &
around then z;’s would form a finite cover of X. But the sequence {z,} is very
not Cauchy, so it has no convergent subsequences. But then X is not sequentially

compact, a contradiction. got ’em! O

2In fact, N = Ny works.
3Necessarily proper—otherwise we would have a finite cover of open balls with radius €, so
the space would be totally bounded, which we’re assuming it isn’t.



