Analysis HW #4

Dyusha Gritsevskiy

February 2019

Problem (1). Let A be a non-empty set of integers, bounded above by $n \in \mathbb{N}$ and bounded below by -n. Prove that A has a largest element. Use this to show that any non-empty set of integers that is bounded above, has a largest element.

Solution. Suppose that A has no largest element. In other words, if we fix any $x \in A$, we can find some $u \in A$ such that u > x. Since A is a nonempty set that is bounded above, A has a least upper bound, which we will call b. We know that $b \notin A$, for if it was, then $b \ge x$ for any $x \in A$, so A has a largest element, a contradiction. By the Archimedean principle, $\bar{b}, b^* \in \mathbb{Z}$ s.t. $\bar{b} < b < b^*$. Let \bar{b} be the largest integer satisfying this inequality, and b^* be the smallest integer satisfying this inequality. Consider \overline{b} . If $\overline{b} \in A$, then we can find some $u \in A$ such that $u > \overline{b}$. Since b is an upper bound for A, $u \leq b$. Thus $\overline{b} < u \leq b$. Since $u \in A$, u is an integer which is less than b, so \overline{b} is no longer the largest integer satisfying the inequality, a contradiction. Thus, it must be the case that $\bar{b} \notin A$. We claim that \bar{b} is an upper bound for A. Suppose not. Then there exists some $s \in A$ such that $s > \overline{b}$. Since $s \in A$, s is an integer, and $\overline{b} < s < b$, since b is an upper bound. Hence, \bar{b} is no longer the largest integer satisfying the inequality, a contradiction once again. We arrive at a point where \overline{b} can be neither in A or not in A; hence, our original assumption that A has no largest element must have been wrong, which completes the proof. \square

Problem (2). Let x, y be positive rationals. Prove that $\sup\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \ge 0, p < x, q < y\} = x \cdot y$.

Solution. Essentially, we want to show that multiplication on the reals agrees with multiplication on the rationals. To do this, we need to show two things:

1. $p \cdot q \leq x \cdot y$ if p < x and q < y for positive rationals p, q; and

2. $x \cdot y$ is the smallest number for which (1) holds.

Proof of (1): Since we're operating on rationals, we can use our usual rational definition of order. Hence, x = p + c and y = q + d for positive rationals c, d. Hence, $x \cdot y = (p + c) \cdot (q + d) = pq + pd + cq + cd$, since the rationals are an ordered field. Since p, q, c, and d are all positive rationals, pd + cq + cd is also a positive rational. Hence, $x \cdot y = pq + (pd + cq + cd)$, so $p \cdot q \le x \cdot y$.

Proof of (2): Fix some $z < x \cdot y$. We want to show that z is *not* an upper bound for $\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \ge 0, p < x, q < y\}$. To be safe, fix some $s \in Q$ such that $z < s < x \cdot y$, so we continue working on rationals; suffices to show that s is not an upper bound. Therefore, it suffices to find some p, q such that their product is greater than or equal to s. Since we're working on rationals, this is pretty easy. Let d = xy - s. Since s < xy, d is a positive rational. Now take a positive rational f = x + y, and let $p = x - \frac{d}{f}$ and $q = y - \frac{d}{f}$. Clearly, $\frac{d}{f}$ is positive, so p < x and q < y, as needed. Now, we get that

$$p \cdot q = \left(x - \frac{d}{f}\right)\left(y - \frac{d}{f}\right) = xy + \frac{d^2}{f^2} - \frac{dx}{f} - \frac{dy}{f} \tag{1}$$

By properties of order on rationals, pq < xy; hence, suffices to show that pq > s. But we have that

$$pq > s \iff$$

$$xy + \frac{d^2}{f^2} - \frac{dx}{f} - \frac{dy}{f} > xy - d \iff$$

$$\frac{dx}{f} + \frac{dy}{f} - \frac{d^2}{f^2} - d < 0 \iff$$

$$d + \frac{d^2}{f^2} > \frac{dx}{f} + \frac{dy}{f} \iff$$

$$1 + \frac{d}{f^2} > \frac{x}{f} + \frac{y}{f} \iff$$

$$1 + \frac{d}{f^2} > \frac{x + y}{f} \iff$$

$$1 + \frac{d}{f^2} > \frac{x + y}{x + y} \iff$$

$$\frac{d}{(x + y)^2} > 0$$
(Since d > 0)

which is definitely true, since d is positive and $(x + y)^2$ is a positive rational.

Problem (3). Let x be a positive rational. Prove that $\inf\{1/p \mid p \in \mathbb{Q}, p > 0, p < x\} = 1/x$.

Solution. We do this in a way similar to problem 2. Essentially, we need to show two things:

1. $1/p \ge 1/x$ if p < x for some positive rational p; and

2. 1/x is the largest number for which (1) holds.

Proof of (1): Since p and x are both rationals, this follows from properties of order.

Proof of (2): Fix some z > 1/x. We want to show that z is not a lower bound for $\{1/p \mid p \in \mathbb{Q}, p > 0, p < x\}$. To be safe, fix some $s \in Q$ such that 1/x < s < z, so we continue working on rationals; suffices to show that s is not a lower bound. Thus, suffices to find some p < x such that 1/p < s. Let d = s - 1/x; since s > 1/x, d is a positive rational. Let's choose $p = x - \frac{sx-1}{2s}$. As s > 1/x, sx > 1, so sx - 1 > 0, so p < x, as needed. Now, suffices to show that 1/p < s, which we do as follows (to simplify things, we let $f = \frac{2s}{x}$ and $d = s - \frac{1}{x}$):

$$\frac{1}{p} < s \iff$$

$$\frac{f}{xf-d} < s \iff$$

$$f(1-sx) < -sd \iff$$

$$f > \frac{-sd}{1-sx} \iff$$

$$f > \frac{sd}{sx-1} \iff$$

$$f > \frac{s}{x} \iff$$

$$\frac{2s}{x} > sx \iff$$

$$2 > 1$$
(Since $s > 0$ and $x > 0$)

which is always true.

Problem (4). Let x be a positive real. Prove that $x \cdot (\frac{1}{x}) = 1$.

Solution. Have to show that

 $\sup \left\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \ge 0, p < x, q < \inf\{1/p \mid p \in \mathbb{Q}, p > 0, p < x\}\right\} = 1 (2)$ in other words,

$$\sup \{ p \cdot q \mid p, q \in \mathbb{Q}, p, q \ge 0, p < x, q < 1/x \} = 1$$
(3)

To do this, we need to demonstrate two things:

- 1. if $p, q \in \mathbb{Q}$, p < x, q < 1/x, p > 0, q > 0, then $p \cdot \left(\frac{1}{q}\right) \leq 1$; and
- 2. 1 is the least real for which (1) holds.

Proof of 1: Fix p,q. Since $q < 1/x = \inf\{1/r \mid r \in \mathbb{Q}, r > 0, r < x\}$, q is a lower bound for $\inf\{1/r \mid r \in \mathbb{Q}, r > 0, r < x\}$. Since $p < x, 1/p > 1/x^1$; since q is the greatest lower bound, $1/p \in \{1/r \mid r \in \mathbb{Q}, r > 0, r < x\}$. Hence $q \leq 1/p$, so $pq \leq 1$.

Proof of 2: Fix some z < 1. Want to show that z is *not* an upper bound for $\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \ge 0, p < x, q < 1/x\}$. First, for convenience, fix some $s \in \mathbb{Q}$ s.t. z < s < 1. Thus, suffices to show that s is not an upper bound for the set. Hence, suffices to find some p, q such that the product of the former and the reciprocal of the latter is greater than s. Fix some p < x.

Problem (5). For all reals b, s > 1, prove that there is an $n \in \mathbb{N}$ so that $b^{1/n} < s$.

Lemma 1

For all $\epsilon > 0$, $n \in N$, $(1 + \epsilon)^n \ge 1 + n\epsilon$.

Proof. We prove this by induction on n.

Base case (n = 0): $(1 + \epsilon)^n = 1 \ge 1 + 0 = 1 + 0\epsilon = 1 + n\epsilon$.

Inductive step: suppose that $(1+\epsilon)^n \ge 1+n\epsilon$. Then $(1+\epsilon)^{n+1} = (1+\epsilon)^n(1+\epsilon) \ge (1+n\epsilon)(1+\epsilon) = 1+n\epsilon^2 + \epsilon(1+n) = 1+(n+1)\epsilon + n\epsilon^2 \ge 1+\epsilon(1+n)$, where the second inequality used the inductive hypothesis and the last step used the fact that $n\epsilon^2 > 0$, which completes the induction.

Solution. Since s = 1, let $s = 1 + \epsilon$ for $\epsilon > 0$. Suffices to find some $n \in \mathbb{N}$ such that $s^n > b$. But iff $s^n > b$, then $(1 + \epsilon)^n > b$, so $1 + n\epsilon > b$ so $n\epsilon > b - 1$ so $n > \frac{b-1}{\epsilon}$. Such an n exists by the Archimedean property.

Problem (6).

Solution. (a). Let x = mq = np, and y = nq. Since the y^{th} root of b^k number is unique, it suffices to show that $((b^m)^{\frac{1}{n}})^y = ((b^p)^{\frac{1}{q}})^y$. The left-hand side of the equation simply equals $((b^m)^{\frac{1}{n}})^{nq} = (b^m)^q = b^{mq} = b^k$; the right-hand side equals $((b^p)^{\frac{1}{q}})^{nq} = (b^p)^n = b^{pn} = b^k$, so we are done.

Problem (7). Recall that $I_n = \{0, 1, ..., n-1\}$ for a natural number n. Prove the pigeonhole principle: for all $n \in \mathbb{N}$, every 1-to-1 function $f: I_n \to I_n$ is onto.

¹Follows via density and order on rationals.

Solution. We prove this using induction.

Base case (n = 0): consider any 1-to-1 function from $\{0\}$ to $\{0\}$; since the target has exactly one element, every function maps to 0. Since 0 is the only element in the target, every function is into, including injective functions.

Inductive step: suppose that every 1-to-1 function $f: I_n \to I_n$ is onto. We want to show that every 1-to-1 function $f: I_{n+1} \to I_{n+1}$ is onto. Consider some 1-to-1 function $a: I_{n+1} \to I_{n+1}$. Consider how it acts on the subset $I_n \subset I_{n+1}$; since it is one-to-one, it acts on a set of n elements, so by the inductive hypothesis it is surjective. Hence, the restriction of a on I_n is a bijection. Now consider how a(n-1). If it maps to any elements in the codomain of the restriction of a, a is no longer one-to-one; hence, it must map to the remaining unmapped-to element in its target. Hence, every element in the target is mapped to, so a is a surjection.

Problem (8). Suppose A is finite, and $B \subsetneq A$. Prove that $B \nsim A$.

Solution. We prove this via strong induction on |A|.

Base case (|A| = 1): A contains one element—let's call this element x. Since $B \subset A$, either $B = \{x\}$ or $B = \{\}$. In the former case, B = A, which is not allowed. Hence, $B = \{\}$. There is a bijection between A and I_n ; specifically, $f : A \to I_n$ given by $x \mapsto 0$. However, there is no bijection between B and I_n ; if that were the case, f(0) in I_n would have to map to something in B, but there is nothing to map to, a contradiction.

Inductive step: suppose that for any $B \subsetneq A$, $B \nsim A$, where |A| = n. Suppose |A| = n + +. Since $B \subsetneq A$, we have two cases: either |B| < n, or $|B| = n^2$. In the former case, assume there is some bijection $f : B \to A$. Since f is a bijection, it maps to |B| elements in A; hence, its codomain is a subset of A. But $B \subsetneq A$, so by the inductive hypothesis, such a bijection cannot exist. In the latter case, there is no bijection between A and B by the inductive hypothesis. This completes the induction.

Problem (9). Rudin 2.4: Is the set of all irrational real numbers countable?

Lemma 2

The union of two countable sets is countable.

²If |B| = n + 1 = |A|, then there is a bijection between A and B; since B is a subset of A, A = B, a contradiction. If |B| > n + 1, then B is no longer a subset of A by various set-theoretic counting theorems.

Proof. Consider two countable sets A_1 , A_2 . Since they are countable, there is a bijection $f : \mathbb{N} \to A_1$, and a bijection $g : N \to A_2$. Consider the set $(f(0), g(0), f(1), g(1), \ldots)$. This set definitely maps to all of $A_1 \cup A_2$, and there exists a bijection from \mathbb{N} to this set (the obvious bijection, where 0 maps to f(0), 1 maps to g(0), n maps to either f or g or n/2 or (n+1)/2 depending on whether n is even or odd). Since the composition of bijections is a bijection, $A_1 \cup A_2$ is countable.

Solution. We claim that the set of irrational real numbers is uncountable.

The real numbers are the union of rational numbers and irrational numbers. We know that \mathbb{R} is uncountable. Suppose for contradiction that the set of irrational numbers is countable. Since the rationals are countable, \mathbb{R} is the union of two countable sets, which by the above lemma is countable, a contradiction. Hence, the irrational numbers are uncountable.