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Problem (1). Let A be a non-empty set of integers, bounded above by n € N
and bounded below by —n. Prove that A has a largest element. Use this to show

that any non-empty set of integers that is bounded above, has a largest element.

Solution. Suppose that A has no largest element. In other words, if we fix any
x € A, we can find some u € A such that u > x. Since A is a nonempty set that
is bounded above, A has a least upper bound, which we will call b. We know
that b ¢ A, for if it was, then b > z for any x € A, so A has a largest element,
a contradiction. By the Archimedean principle, b,b* € Z s.t. b < b < b*. Let b
be the largest integer satisfying this inequality, and b* be the smallest integer
satistying this inequality. Consider b. If b € A, then we can find some u € A
such that « > b. Since b is an upper bound for A, u < b. Thus b < u < b. Since
u € A, u is an integer which is less than b, so b is no longer the largest integer
satisfying the inequality, a contradiction. Thus, it must be the case that b ¢ A.
We claim that b is an upper bound for A. Suppose not. Then there exists some
s € A such that s > b. Since s € A, s is an integer, and b < s < b, since b is an
upper bound. Hence, b is no longer the largest integer satisfying the inequality,
a contradiction once again. We arrive at a point where b can be neither in A
or not in A; hence, our original assumption that A has no largest element must

have been wrong, which completes the proof. O

Problem (2). Let x, y be positive rationals. Prove that sup{p-q | p,q € Q,p,q >
O,p<zyqg<y}l=x-y.

Solution. Essentially, we want to show that multiplication on the reals agrees
with multiplication on the rationals. To do this, we need to show two things:
1. p-q<z-yif p<xand q <y for positive rationals p, ¢; and
2. x -y is the smallest number for which @ holds.



Proof of @: Since we’re operating on rationals, we can use our usual rational
definition of order. Hence, z = p + ¢ and y = ¢ + d for positive rationals c, d.
Hence, z -y = (p+¢) - (¢ + d) = pq + pd + cq + cd, since the rationals are an
ordered field. Since p, ¢, ¢, and d are all positive rationals, pd + cq + c¢d is also a
positive rational. Hence, z -y = pg+ (pd + cq+ cd), sop-q < x - y.

Proof of @: Fix some z < z - y. We want to show that z is not an upper
bound for {p-q | p,q € Q,p,q > 0,p < z,q < y}. To be safe, fix some s € Q
such that z < s < x - y, so we continue working on rationals; suffices to show
that s is not an upper bound. Therefore, it suffices to find some p, g such that
their product is greater than or equal to s. Since we’re working on rationals,
this is pretty easy. Let d = xy — s. Since s < zy, d is a positive rational. Now
take a positive rational f =z 4y, and let p =z — % and g =y — %. Clearly, %
is positive, so p < z and ¢ < y, as needed. Now, we get that
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By properties of order on rationals, pg < xy; hence, suffices to show that

pq > s. But we have that

= (Since d > 0)

(z +y)?
which is definitely true, since d is positive and (z + y)? is a positive rational.
O

Problem (3). Let = be a positive rational. Prove that inf{1/p | p € Q,p >
0,p<az}=1/z.



Solution. We do this in a way similar to problem 2. Essentially, we need to show
two things:

1. 1/p > 1/x if p < x for some positive rational p; and

2. 1/x is the largest number for which @ holds.

Proof of @: Since p and z are both rationals, this follows from properties
of order.

Proof of @: Fix some z > 1/x. We want to show that z is not a lower
bound for {1/p | p € Q,p > 0,p < z}. To be safe, fix some s € @ such that
1/z < s < z, so we continue working on rationals; suffices to show that s is

not a lower bound. Thus, suffices to find some p < x such that 1/p < s. Let
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As s> 1/x, sx > 1,50 sz —1 >0, so p <z, as needed. Now, suffices to show

that 1/p < s, which we do as follows (to simplify things, we let f = % and

d:s—%):

d=s—1/z; since s > 1/x, d is a positive rational. Let’s choose p = x —
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which is always true. O

Problem (4). Let z be a positive real. Prove that z - (1) = 1.

Solution. Have to show that
sup{p-q|p,g€Qp,q>0,p<z,g<inf{l/p|pecQp>0p<z}}=1(2)
in other words,
sup{p-q¢|p,geQp,g>0,p<wzqg<l/z}=1 (3)

To do this, we need to demonstrate two things:



1. ifpgeQ,p<z,g<l/z,p>0,qg>0,thenp- (%) < 1; and

2. 1 is the least real for which @ holds.

Proof of 1: Fix p,q. Since ¢ < 1/x = inf{1/r | r € Q,r > 0,r < z}, g is a
lower bound for inf{1/r | r € Q,7 > 0,7 < z}. Since p < x, 1/p > 1/z"; since ¢
is the greatest lower bound, 1/p € {1/r | r € Q,r > 0,r < x}. Hence ¢ < 1/p,
so pqg < 1.

Proof of 2: Fix some z < 1. Want to show that z is not an upper bound for
{p-q|p,qgeQupqg>0,p<ax,q<1/x}. First, for convenience, fix some s € Q
s.t. z < s < 1. Thus, suffices to show that s is not an upper bound for the set.
Hence, suffices to find some p, ¢ such that the product of the former and the

reciprocal of the latter is greater than s. Fix some p < x. O

Problem (5). For all reals b, s > 1, prove that there is an n € N so that b'/™ < s.

Lemma 1
Foralle >0,n €N, (1+¢€)">1+ ne.

Proof. We prove this by induction on n.

Base case (n=0): (14+€)"=1>140=1+0ec=1+ ne.

Inductive step: suppose that (1+¢)™ > 1+mne. Then (14¢€)" T = (1+¢€)"(1+
> (1+ne)(1+e)=1+ne2+e(l+n)=1+n+1)e+ne>>1+¢€(l+n),
where the second inequality used the inductive hypothesis and the last step used
the fact that ne? > 0, which completes the induction. O

Solution. Since s =1, let s = 1+ € for € > 0. Suffices to find some n € N such
that s™ > b. But iff s™ > b, then (1+¢)” > b, s0 1 4+ ne > b so ne > b—1 so
n > b_Tl. Such an n exists by the Archimedean property. O

Problem (6).

Solution. (a). Let x = mq = np, and y = nq. Since the y*" root of b*¥ number
is unique, it suffices to show that ((b™)w)¥ = ((bp)%)y. The left-hand side of
the equation simply equals ((b™)# )" = (b™)4 = b™4 = b*; the right-hand side
equals ((bp)%)"q = (b?)" = bP" = b¥, so we are done. O

Problem (7). Recall that I,, = {0,1,...,n — 1} for a natural number n. Prove
the pigeonhole principle: for all n € N, every 1-to-1 function f : I,, — I, is onto.

IFollows via density and order on rationals.



Solution. We prove this using induction.

Base case (n = 0): consider any 1-to-1 function from {0} to {0}; since the
target has exactly one element, every function maps to 0. Since 0 is the only
element in the target, every function is into, including injective functions.

Inductive step: suppose that every 1-to-1 function f : I,, — I, is onto. We
want to show that every 1-to-1 function f : I,,11 — I,41 is onto. Consider some
1-to-1 function a : I, 41 — I,+1. Consider how it acts on the subset I, C I,,41;
since it is one-to-one, it acts on a set of n elements, so by the inductive hypothesis
it is surjective. Hence, the restriction of a on I, is a bijection. Now consider
how a(n — 1). If it maps to any elements in the codomain of the restriction of a,
a is no longer one-to-one; hence, it must map to the remaining unmapped-to
element in its target. Hence, every element in the target is mapped to, so a is a

surjection. O
Problem (8). Suppose A is finite, and B C A. Prove that B ~ A.

Solution. We prove this via strong induction on |A|.

Base case (JA| =1): A contains one element—Ilet’s call this element z. Since
B C A, either B = {z} or B = {}. In the former case, B = A, which is not
allowed. Hence, B = {}. There is a bijection between A and I,,; specifically,
f+A— I, given by x — 0. However, there is no bijection between B and I,,; if
that were the case, f(0) in I,, would have to map to something in B, but there
is nothing to map to, a contradiction.

Inductive step: suppose that for any B C A, B = A, where |A| = n. Suppose
|A] = n+ +. Since B C A, we have two cases: either |B| < n, or |B|] = n”.
In the former case, assume there is some bijection f : B — A. Since f is a
bijection, it maps to |B| elements in A; hence, its codomain is a subset of A.
But B C A, so by the inductive hypothesis, such a bijection cannot exist. In the
latter case, there is no bijection between A and B by the inductive hypothesis.

This completes the induction. O

Problem (9). Rudin 2.4: Is the set of all irrational real numbers countable?

Lemma 2

The union of two countable sets is countable.

2If |B] = n + 1 = |A|, then there is a bijection between A and B; since B is a subset of
A, A = B, a contradiction. If |B| > n + 1, then B is no longer a subset of A by various
set-theoretic counting theorems.



Proof. Consider two countable sets A;, As. Since they are countable, there
is a bijection f : N — A;, and a bijection g : N — As. Consider the set
(f(0),4(0), f(1),g(1),...). This set definitely maps to all of A; U A, and there
exists a bijection from N to this set (the obvious bijection, where 0 maps to
f(0), 1 maps to g(0), n maps to either f or g or n/2 or (n + 1)/2 depending
on whether n is even or odd). Since the composition of bijections is a bijection,
A, U Ay is countable. O

Solution. We claim that the set of irrational real numbers is uncountable.

The real numbers are the union of rational numbers and irrational numbers.
We know that R is uncountable. Suppose for contradiction that the set of
irrational numbers is countable. Since the rationals are countable, R is the union
of two countable sets, which by the above lemma is countable, a contradiction.

Hence, the irrational numbers are uncountable. O



