Analysis HW \#4

Dyusha Gritsevskiy

February 2019

Problem (1). Let A be a non-empty set of integers, bounded above by $n \in \mathbb{N}$ and bounded below by $-n$. Prove that A has a largest element. Use this to show that any non-empty set of integers that is bounded above, has a largest element.

Solution. Suppose that A has no largest element. In other words, if we fix any $x \in A$, we can find some $u \in A$ such that $u>x$. Since A is a nonempty set that is bounded above, A has a least upper bound, which we will call b. We know that $b \notin A$, for if it was, then $b \geq x$ for any $x \in A$, so A has a largest element, a contradiction. By the Archimedean principle, $\bar{b}, b^{*} \in \mathbb{Z}$ s.t. $\bar{b}<b<b^{*}$. Let \bar{b} be the largest integer satisfying this inequality, and b^{*} be the smallest integer satistying this inequality. Consider \bar{b}. If $\bar{b} \in A$, then we can find some $u \in A$ such that $u>\bar{b}$. Since b is an upper bound for $A, u \leq b$. Thus $\bar{b}<u \leq b$. Since $u \in A, u$ is an integer which is less than b, so \bar{b} is no longer the largest integer satisfying the inequality, a contradiction. Thus, it must be the case that $\bar{b} \notin A$. We claim that \bar{b} is an upper bound for A. Suppose not. Then there exists some $s \in A$ such that $s>\bar{b}$. Since $s \in A, s$ is an integer, and $\bar{b}<s \leq b$, since b is an upper bound. Hence, \bar{b} is no longer the largest integer satisfying the inequality, a contradiction once again. We arrive at a point where \bar{b} can be neither in A or not in A; hence, our original assumption that A has no largest element must have been wrong, which completes the proof.

Problem (2). Let x, y be positive rationals. Prove that $\sup \{p \cdot q \mid p, q \in \mathbb{Q}, p, q \geq$ $0, p<x, q<y\}=x \cdot y$.

Solution. Essentially, we want to show that multiplication on the reals agrees with multiplication on the rationals. To do this, we need to show two things:

1. $p \cdot q \leq x \cdot y$ if $p<x$ and $q<y$ for positive rationals p, q; and
2. $x \cdot y$ is the smallest number for which (1) holds.

Proof of (1): Since we're operating on rationals, we can use our usual rational definition of order. Hence, $x=p+c$ and $y=q+d$ for positive rationals c, d. Hence, $x \cdot y=(p+c) \cdot(q+d)=p q+p d+c q+c d$, since the rationals are an ordered field. Since p, q, c, and d are all positive rationals, $p d+c q+c d$ is also a positive rational. Hence, $x \cdot y=p q+(p d+c q+c d)$, so $p \cdot q \leq x \cdot y$.

Proof of (2): Fix some $z<x \cdot y$. We want to show that z is not an upper bound for $\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \geq 0, p<x, q<y\}$. To be safe, fix some $s \in Q$ such that $z<s<x \cdot y$, so we continue working on rationals; suffices to show that s is not an upper bound. Therefore, it suffices to find some p, q such that their product is greater than or equal to s. Since we're working on rationals, this is pretty easy. Let $d=x y-s$. Since $s<x y, d$ is a positive rational. Now take a positive rational $f=x+y$, and let $p=x-\frac{d}{f}$ and $q=y-\frac{d}{f}$. Clearly, $\frac{d}{f}$ is positive, so $p<x$ and $q<y$, as needed. Now, we get that

$$
\begin{equation*}
p \cdot q=\left(x-\frac{d}{f}\right)\left(y-\frac{d}{f}\right)=x y+\frac{d^{2}}{f^{2}}-\frac{d x}{f}-\frac{d y}{f} \tag{1}
\end{equation*}
$$

By properties of order on rationals, $p q<x y$; hence, suffices to show that $p q>s$. But we have that

$$
\begin{aligned}
p q>s \Longleftrightarrow \\
x y+\frac{d^{2}}{f^{2}}-\frac{d x}{f}-\frac{d y}{f}>x y-d \Longleftrightarrow \\
\frac{d x}{f}+\frac{d y}{f}-\frac{d^{2}}{f^{2}}-d<0 \Longleftrightarrow \\
d+\frac{d^{2}}{f^{2}}>\frac{d x}{f}+\frac{d y}{f} \Longleftrightarrow \\
1+\frac{d}{f^{2}}>\frac{x}{f}+\frac{y}{f} \Longleftrightarrow \\
1+\frac{d}{f^{2}}>\frac{x+y}{f} \Longleftrightarrow \\
1+\frac{d}{f^{2}}>\frac{x+y}{x+y} \Longleftrightarrow \\
\frac{d}{(x+y)^{2}}>0
\end{aligned}
$$

(Since $d>0$)
which is definitely true, since d is positive and $(x+y)^{2}$ is a positive rational.

Problem (3). Let x be a positive rational. Prove that $\inf \{1 / p \mid p \in \mathbb{Q}, p>$ $0, p<x\}=1 / x$.

Solution. We do this in a way similar to problem 2. Essentially, we need to show two things:

1. $1 / p \geq 1 / x$ if $p<x$ for some positive rational p; and
2. $1 / x$ is the largest number for which (1) holds.

Proof of (1): Since p and x are both rationals, this follows from properties of order.

Proof of (2): Fix some $z>1 / x$. We want to show that z is not a lower bound for $\{1 / p \mid p \in \mathbb{Q}, p>0, p<x\}$. To be safe, fix some $s \in Q$ such that $1 / x<s<z$, so we continue working on rationals; suffices to show that s is not a lower bound. Thus, suffices to find some $p<x$ such that $1 / p<s$. Let $d=s-1 / x$; since $s>1 / x, d$ is a positive rational. Let's choose $p=x-\frac{s x-1}{2 s}$. As $s>1 / x, s x>1$, so $s x-1>0$, so $p<x$, as needed. Now, suffices to show that $1 / p<s$, which we do as follows (to simplify things, we let $f=\frac{2 s}{x}$ and $\left.d=s-\frac{1}{x}\right)$:

$$
\begin{aligned}
\frac{1}{p} & <s \Longleftrightarrow \\
\frac{f}{x f-d} & <s \Longleftrightarrow \\
f(1-s x) & <-s d \Longleftrightarrow \\
f & >\frac{-s d}{1-s x} \\
f & \Longleftrightarrow \frac{s d}{s x-1} \Longleftrightarrow \\
f & >\frac{s}{x} \Longleftrightarrow \\
\frac{2 s}{x}>s x \Longleftrightarrow & \quad \text { (Since } s>1 / x) \\
2 & >1
\end{aligned} \quad \begin{aligned}
& \\
& \\
& \quad \text { (Since } s>0 \text { and } x>0 \text {) }
\end{aligned}
$$

which is always true.
Problem (4). Let x be a positive real. Prove that $x \cdot\left(\frac{1}{x}\right)=1$.
Solution. Have to show that
$\sup \{p \cdot q \mid p, q \in \mathbb{Q}, p, q \geq 0, p<x, q<\inf \{1 / p \mid p \in \mathbb{Q}, p>0, p<x\}\}=1$
in other words,

$$
\begin{equation*}
\sup \{p \cdot q \mid p, q \in \mathbb{Q}, p, q \geq 0, p<x, q<1 / x\}=1 \tag{3}
\end{equation*}
$$

To do this, we need to demonstrate two things:

1. if $p, q \in \mathbb{Q}, p<x, q<1 / x, p>0, q>0$, then $p \cdot\left(\frac{1}{q}\right) \leq 1$; and
2. 1 is the least real for which (1) holds.

Proof of 1: Fix p, q. Since $q<1 / x=\inf \{1 / r \mid r \in \mathbb{Q}, r>0, r<x\}, q$ is a lower bound for $\inf \{1 / r \mid r \in \mathbb{Q}, r>0, r<x\}$. Since $p<x, 1 / p>1 / x^{1}$; since q is the greatest lower bound, $1 / p \in\{1 / r \mid r \in \mathbb{Q}, r>0, r<x\}$. Hence $q \leq 1 / p$, so $p q \leq 1$.

Proof of 2: Fix some $z<1$. Want to show that z is not an upper bound for $\{p \cdot q \mid p, q \in \mathbb{Q}, p, q \geq 0, p<x, q<1 / x\}$. First, for convenience, fix some $s \in \mathbb{Q}$ s.t. $z<s<1$. Thus, suffices to show that s is not an upper bound for the set. Hence, suffices to find some p, q such that the product of the former and the reciprocal of the latter is greater than s. Fix some $p<x$.

Problem (5). For all reals $b, s>1$, prove that there is an $n \in \mathbb{N}$ so that $b^{1 / n}<s$.

Lemma 1

For all $\epsilon>0, n \in N,(1+\epsilon)^{n} \geq 1+n \epsilon$.

Proof. We prove this by induction on n.
Base case $(n=0):(1+\epsilon)^{n}=1 \geq 1+0=1+0 \epsilon=1+n \epsilon$.
Inductive step: suppose that $(1+\epsilon)^{n} \geq 1+n \epsilon$. Then $(1+\epsilon)^{n+1}=(1+\epsilon)^{n}(1+$ $\epsilon) \geq(1+n \epsilon)(1+\epsilon)=1+n \epsilon^{2}+\epsilon(1+n)=1+(n+1) \epsilon+n \epsilon^{2} \geq 1+\epsilon(1+n)$, where the second inequality used the inductive hypothesis and the last step used the fact that $n \epsilon^{2}>0$, which completes the induction.

Solution. Since $s=1$, let $s=1+\epsilon$ for $\epsilon>0$. Suffices to find some $n \in \mathbb{N}$ such that $s^{n}>b$. But iff $s^{n}>b$, then $(1+\epsilon)^{n}>b$, so $1+n \epsilon>b$ so $n \epsilon>b-1$ so $n>\frac{b-1}{\epsilon}$. Such an n exists by the Archimedean property.

Problem (6).
Solution. (a). Let $x=m q=n p$, and $y=n q$. Since the $y^{\text {th }}$ root of b^{k} number is unique, it suffices to show that $\left(\left(b^{m}\right)^{\frac{1}{n}}\right)^{y}=\left(\left(b^{p}\right)^{\frac{1}{q}}\right)^{y}$. The left-hand side of the equation simply equals $\left(\left(b^{m}\right)^{\frac{1}{n}}\right)^{n q}=\left(b^{m}\right)^{q}=b^{m q}=b^{k}$; the right-hand side equals $\left(\left(b^{p}\right)^{\frac{1}{q}}\right)^{n q}=\left(b^{p}\right)^{n}=b^{p n}=b^{k}$, so we are done.

Problem (7). Recall that $I_{n}=\{0,1, \ldots, n-1\}$ for a natural number n. Prove the pigeonhole principle: for all $n \in \mathbb{N}$, every 1-to-1 function $f: I_{n} \rightarrow I_{n}$ is onto.

[^0]Solution. We prove this using induction.
Base case $(n=0)$: consider any 1-to- 1 function from $\{0\}$ to $\{0\}$; since the target has exactly one element, every function maps to 0 . Since 0 is the only element in the target, every function is into, including injective functions.

Inductive step: suppose that every 1-to- 1 function $f: I_{n} \rightarrow I_{n}$ is onto. We want to show that every 1-to-1 function $f: I_{n+1} \rightarrow I_{n+1}$ is onto. Consider some 1-to-1 function $a: I_{n+1} \rightarrow I_{n+1}$. Consider how it acts on the subset $I_{n} \subset I_{n+1}$; since it is one-to-one, it acts on a set of n elements, so by the inductive hypothesis it is surjective. Hence, the restriction of a on I_{n} is a bijection. Now consider how $a(n-1)$. If it maps to any elements in the codomain of the restriction of a, a is no longer one-to-one; hence, it must map to the remaining unmapped-to element in its target. Hence, every element in the target is mapped to, so a is a surjection.

Problem (8). Suppose A is finite, and $B \subsetneq A$. Prove that $B \nsim A$.
Solution. We prove this via strong induction on $|A|$.
Base case $(|A|=1)$: A contains one element-let's call this element x. Since $B \subset A$, either $B=\{x\}$ or $B=\{ \}$. In the former case, $B=A$, which is not allowed. Hence, $B=\{ \}$. There is a bijection between A and I_{n}; specifically, $f: A \rightarrow I_{n}$ given by $x \mapsto 0$. However, there is no bijection between B and I_{n}; if that were the case, $f(0)$ in I_{n} would have to map to something in B, but there is nothing to map to, a contradiction.

Inductive step: suppose that for any $B \subsetneq A, B \nsim A$, where $|A|=n$. Suppose $|A|=n++$. Since $B \subsetneq A$, we have two cases: either $|B|<n$, or $|B|=n^{2}$. In the former case, assume there is some bijection $f: B \rightarrow A$. Since f is a bijection, it maps to $|B|$ elements in A; hence, its codomain is a subset of A. But $B \subsetneq A$, so by the inductive hypothesis, such a bijection cannot exist. In the latter case, there is no bijection between A and B by the inductive hypothesis. This completes the induction.

Problem (9). Rudin 2.4: Is the set of all irrational real numbers countable?

Lemma 2

The union of two countable sets is countable.

[^1]Proof. Consider two countable sets A_{1}, A_{2}. Since they are countable, there is a bijection $f: \mathbb{N} \rightarrow A_{1}$, and a bijection $g: N \rightarrow A_{2}$. Consider the set $(f(0), g(0), f(1), g(1), \ldots)$. This set definitely maps to all of $A_{1} \cup A_{2}$, and there exists a bijection from \mathbb{N} to this set (the obvious bijection, where 0 maps to $f(0), 1$ maps to $g(0), n$ maps to either f or g or $n / 2$ or $(n+1) / 2$ depending on whether n is even or odd). Since the composition of bijections is a bijection, $A_{1} \cup A_{2}$ is countable.

Solution. We claim that the set of irrational real numbers is uncountable.
The real numbers are the union of rational numbers and irrational numbers. We know that \mathbb{R} is uncountable. Suppose for contradiction that the set of irrational numbers is countable. Since the rationals are countable, \mathbb{R} is the union of two countable sets, which by the above lemma is countable, a contradiction. Hence, the irrational numbers are uncountable.

[^0]: ${ }^{1}$ Follows via density and order on rationals.

[^1]: ${ }^{2}$ If $|B|=n+1=|A|$, then there is a bijection between A and B; since B is a subset of $A, A=B$, a contradiction. If $|B|>n+1$, then B is no longer a subset of A by various set-theoretic counting theorems.

