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Problem (1). Let A be a non-empty set of integers, bounded above by n ∈ N
and bounded below by −n. Prove that A has a largest element. Use this to show
that any non-empty set of integers that is bounded above, has a largest element.

Solution. Suppose that A has no largest element. In other words, if we fix any
x ∈ A, we can find some u ∈ A such that u > x. Since A is a nonempty set that
is bounded above, A has a least upper bound, which we will call b. We know
that b /∈ A, for if it was, then b ≥ x for any x ∈ A, so A has a largest element,
a contradiction. By the Archimedean principle, b̄, b∗ ∈ Z s.t. b̄ < b < b∗. Let b̄
be the largest integer satisfying this inequality, and b∗ be the smallest integer
satistying this inequality. Consider b̄. If b̄ ∈ A, then we can find some u ∈ A
such that u > b̄. Since b is an upper bound for A, u ≤ b. Thus b̄ < u ≤ b. Since
u ∈ A, u is an integer which is less than b, so b̄ is no longer the largest integer
satisfying the inequality, a contradiction. Thus, it must be the case that b̄ /∈ A.
We claim that b̄ is an upper bound for A. Suppose not. Then there exists some
s ∈ A such that s > b̄. Since s ∈ A, s is an integer, and b̄ < s ≤ b, since b is an
upper bound. Hence, b̄ is no longer the largest integer satisfying the inequality,
a contradiction once again. We arrive at a point where b̄ can be neither in A
or not in A; hence, our original assumption that A has no largest element must
have been wrong, which completes the proof.

Problem (2). Let x, y be positive rationals. Prove that sup{p·q | p, q ∈ Q, p, q ≥
0, p < x, q < y} = x · y.

Solution. Essentially, we want to show that multiplication on the reals agrees
with multiplication on the rationals. To do this, we need to show two things:

1. p · q ≤ x · y if p < x and q < y for positive rationals p, q; and
2. x · y is the smallest number for which 1 holds.
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Proof of 1 : Since we’re operating on rationals, we can use our usual rational
definition of order. Hence, x = p + c and y = q + d for positive rationals c, d.
Hence, x · y = (p + c) · (q + d) = pq + pd + cq + cd, since the rationals are an
ordered field. Since p, q, c, and d are all positive rationals, pd+ cq + cd is also a
positive rational. Hence, x · y = pq + (pd+ cq + cd), so p · q ≤ x · y.

Proof of 2 : Fix some z < x · y. We want to show that z is not an upper
bound for {p · q | p, q ∈ Q, p, q ≥ 0, p < x, q < y}. To be safe, fix some s ∈ Q
such that z < s < x · y, so we continue working on rationals; suffices to show
that s is not an upper bound. Therefore, it suffices to find some p, q such that
their product is greater than or equal to s. Since we’re working on rationals,
this is pretty easy. Let d = xy − s. Since s < xy, d is a positive rational. Now
take a positive rational f = x+ y, and let p = x− d

f and q = y − d
f . Clearly,

d
f

is positive, so p < x and q < y, as needed. Now, we get that

p · q =
(
x− d

f

) (
y − d

f

)
= xy + d2

f2 −
dx

f
− dy

f
(1)

By properties of order on rationals, pq < xy; hence, suffices to show that
pq > s. But we have that

pq > s ⇐⇒

xy + d2

f2 −
dx

f
− dy

f
> xy − d ⇐⇒

dx

f
+ dy

f
− d2

f2 − d < 0 ⇐⇒

d+ d2

f2 >
dx

f
+ dy

f
⇐⇒

1 + d

f2 >
x

f
+ y

f
⇐⇒ (Since d > 0)

1 + d

f2 >
x+ y

f
⇐⇒

1 + d

f2 >
x+ y

x+ y
⇐⇒

d

(x+ y)2 > 0

which is definitely true, since d is positive and (x+ y)2 is a positive rational.

Problem (3). Let x be a positive rational. Prove that inf{1/p | p ∈ Q, p >
0, p < x} = 1/x.
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Solution. We do this in a way similar to problem 2. Essentially, we need to show
two things:

1. 1/p ≥ 1/x if p < x for some positive rational p; and
2. 1/x is the largest number for which 1 holds.
Proof of 1 : Since p and x are both rationals, this follows from properties

of order.
Proof of 2 : Fix some z > 1/x. We want to show that z is not a lower

bound for {1/p | p ∈ Q, p > 0, p < x}. To be safe, fix some s ∈ Q such that
1/x < s < z, so we continue working on rationals; suffices to show that s is
not a lower bound. Thus, suffices to find some p < x such that 1/p < s. Let
d = s− 1/x; since s > 1/x, d is a positive rational. Let’s choose p = x− sx−1

2s .
As s > 1/x, sx > 1, so sx− 1 > 0, so p < x, as needed. Now, suffices to show
that 1/p < s, which we do as follows (to simplify things, we let f = 2s

x and
d = s− 1

x ):
1
p
< s ⇐⇒

f

xf − d
< s ⇐⇒

f(1− sx) < −sd ⇐⇒

f >
−sd

1− sx ⇐⇒ (Since s > 1/x)

f >
sd

sx− 1 ⇐⇒

f >
s

x
⇐⇒

2s
x
> sx ⇐⇒

2 > 1 (Since s > 0 and x > 0)

which is always true.

Problem (4). Let x be a positive real. Prove that x · ( 1
x ) = 1.

Solution. Have to show that

sup {p · q | p, q ∈ Q, p, q ≥ 0, p < x, q < inf{1/p | p ∈ Q, p > 0, p < x}} = 1 (2)

in other words,

sup {p · q | p, q ∈ Q, p, q ≥ 0, p < x, q < 1/x} = 1 (3)

To do this, we need to demonstrate two things:



5

1. if p, q ∈ Q, p < x, q < 1/x, p > 0, q > 0, then p ·
(

1
q

)
≤ 1; and

2. 1 is the least real for which 1 holds.
Proof of 1: Fix p, q. Since q < 1/x = inf{1/r | r ∈ Q, r > 0, r < x}, q is a

lower bound for inf{1/r | r ∈ Q, r > 0, r < x}. Since p < x, 1/p > 1/x1; since q
is the greatest lower bound, 1/p ∈ {1/r | r ∈ Q, r > 0, r < x}. Hence q ≤ 1/p,
so pq ≤ 1.

Proof of 2: Fix some z < 1. Want to show that z is not an upper bound for
{p · q | p, q ∈ Q, p, q ≥ 0, p < x, q < 1/x}. First, for convenience, fix some s ∈ Q
s.t. z < s < 1. Thus, suffices to show that s is not an upper bound for the set.
Hence, suffices to find some p, q such that the product of the former and the
reciprocal of the latter is greater than s. Fix some p < x.

Problem (5). For all reals b, s > 1, prove that there is an n ∈ N so that b1/n < s.

Lemma 1
For all ε > 0, n ∈ N , (1 + ε)n ≥ 1 + nε.

Proof. We prove this by induction on n.
Base case (n = 0): (1 + ε)n = 1 ≥ 1 + 0 = 1 + 0ε = 1 + nε.
Inductive step: suppose that (1+ε)n ≥ 1+nε. Then (1+ε)n+1 = (1+ε)n(1+

ε) ≥ (1 + nε)(1 + ε) = 1 + nε2 + ε(1 + n) = 1 + (n+ 1)ε+ nε2 ≥ 1 + ε(1 + n),
where the second inequality used the inductive hypothesis and the last step used
the fact that nε2 > 0, which completes the induction.

Solution. Since s = 1, let s = 1 + ε for ε > 0. Suffices to find some n ∈ N such
that sn > b. But iff sn > b, then (1 + ε)n > b, so 1 + nε > b so nε > b − 1 so
n > b−1

ε . Such an n exists by the Archimedean property.

Problem (6).

Solution. (a). Let x = mq = np, and y = nq. Since the yth root of bk number
is unique, it suffices to show that ((bm) 1

n )y = ((bp)
1
q )y. The left-hand side of

the equation simply equals ((bm) 1
n )nq = (bm)q = bmq = bk; the right-hand side

equals ((bp)
1
q )nq = (bp)n = bpn = bk, so we are done.

Problem (7). Recall that In = {0, 1, . . . , n− 1} for a natural number n. Prove
the pigeonhole principle: for all n ∈ N, every 1-to-1 function f : In → In is onto.

1Follows via density and order on rationals.
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Solution. We prove this using induction.
Base case (n = 0): consider any 1-to-1 function from {0} to {0}; since the

target has exactly one element, every function maps to 0. Since 0 is the only
element in the target, every function is into, including injective functions.

Inductive step: suppose that every 1-to-1 function f : In → In is onto. We
want to show that every 1-to-1 function f : In+1 → In+1 is onto. Consider some
1-to-1 function a : In+1 → In+1. Consider how it acts on the subset In ⊂ In+1;
since it is one-to-one, it acts on a set of n elements, so by the inductive hypothesis
it is surjective. Hence, the restriction of a on In is a bijection. Now consider
how a(n− 1). If it maps to any elements in the codomain of the restriction of a,
a is no longer one-to-one; hence, it must map to the remaining unmapped-to
element in its target. Hence, every element in the target is mapped to, so a is a
surjection.

Problem (8). Suppose A is finite, and B ( A. Prove that B � A.

Solution. We prove this via strong induction on |A|.
Base case (|A| = 1): A contains one element—let’s call this element x. Since

B ⊂ A, either B = {x} or B = {}. In the former case, B = A, which is not
allowed. Hence, B = {}. There is a bijection between A and In; specifically,
f : A→ In given by x 7→ 0. However, there is no bijection between B and In; if
that were the case, f(0) in In would have to map to something in B, but there
is nothing to map to, a contradiction.

Inductive step: suppose that for any B ( A, B � A, where |A| = n. Suppose
|A| = n + +. Since B ( A, we have two cases: either |B| < n, or |B| = n2.
In the former case, assume there is some bijection f : B → A. Since f is a
bijection, it maps to |B| elements in A; hence, its codomain is a subset of A.
But B ( A, so by the inductive hypothesis, such a bijection cannot exist. In the
latter case, there is no bijection between A and B by the inductive hypothesis.
This completes the induction.

Problem (9). Rudin 2.4: Is the set of all irrational real numbers countable?

Lemma 2
The union of two countable sets is countable.

2If |B| = n + 1 = |A|, then there is a bijection between A and B; since B is a subset of
A, A = B, a contradiction. If |B| > n + 1, then B is no longer a subset of A by various
set-theoretic counting theorems.
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Proof. Consider two countable sets A1, A2. Since they are countable, there
is a bijection f : N → A1, and a bijection g : N → A2. Consider the set
(f(0), g(0), f(1), g(1), . . .). This set definitely maps to all of A1 ∪A2, and there
exists a bijection from N to this set (the obvious bijection, where 0 maps to
f(0), 1 maps to g(0), n maps to either f or g or n/2 or (n + 1)/2 depending
on whether n is even or odd). Since the composition of bijections is a bijection,
A1 ∪A2 is countable.

Solution. We claim that the set of irrational real numbers is uncountable.
The real numbers are the union of rational numbers and irrational numbers.

We know that R is uncountable. Suppose for contradiction that the set of
irrational numbers is countable. Since the rationals are countable, R is the union
of two countable sets, which by the above lemma is countable, a contradiction.
Hence, the irrational numbers are uncountable.


