Analysis HW #3

Dyusha Gritsevskiy

January 2019

Problem (1). Prove (for integers) that if $a = q \cdot b + r$ then gcd(a, b) = gcd(b, r).

Solution. Consider the set $Y = \{r \in \mathbb{Z}^+ \mid r \text{ divides } b\}$. We will make use of the following claim:

Claim 0.1. If $k \in Y$, then $k \mid qb + r$ iff $k \mid r$.

Proof. (\implies): Since $k \in Y$, $k \mid b$. Thus, b = xk for some integer x. So qb = k(qx), and qx is a positive integer, so $k \mid qb$. Thus, qb = yk for some integer y^1 . Thus qb + r = ky + r = k(y + r/k), so k must divide r. Hence $k \mid r$.

 (\Leftarrow) : Since $k \in Y$, $k \mid b$. Thus, b = xk for some (positive) integer x. But also $k \mid r$, so r = yk for some (positive) integer y. Hence qb + r = qxk + yk = k(qx + y); hnce, $k \mid qb + r$ since qx + y is a positive integer.

Now, consider the set $X = \{r \in \mathbb{Z}^+ \mid r \text{ divides } r\}$, and $Z = \{r \in \mathbb{Z}^+ \mid r \text{ divides } qb + r\}$. By definition, $gcd(b,r) \in Y$ and $gcd(b,r) \in X$; by the claim, $gcd(b,r) \in Z$. Again by definition, $gcd(a,b) = gcd(qb + r,b) \in Z$ and $gcd(a,b) \in Y$; by the claim, $gcd(a,b) \in X$. Hence, both greatest common divisors are in the set of possible divisors $X \cup Y \cup Z$. But since $X \cup Y \cup Z$ has a unique greatest element, gcd(a,b) = gcd(b,r).

Problem (2). Prove that for any natural numbers a, b, there are integers u, w so that $gcd(a, b) = u \cdot a + w \cdot b$.

Solution. Write a = bq + r and $b = rq_1 + r_1$; continuing the Euclidean algorithm, we get that $r = r_1q_2 + r_2$, $r_1 = r_2q_3 + r_3$, etc, until $r_{n-2} = r_{n-1}q_n + r_n$ and $r_{n-1} = 0$. By (1), we know that $gcd(a, b) = gcd(b, r) = gcd(r_{n-1}, 0) = r_{n-1}$. By induction, we can work upwards to write r_{n-1} as a linear combination of a and b; thus, gcd(a, b) is some integral linear combination of a and b, as desired. \Box

¹In particular, y = qx.

Problem (3). Let p be prime (meaning a natural number so that the only natural numbers dividing p are p and 1). Suppose p divides $a \cdot b$. Prove that p divides a or divides b.

Solution.

Problem (Rudin 1.2). Prove that there is no rational number whose square is 12.

Solution. If $x^2 = 12$, then $x^2 = 2^2 \cdot 3$, so $(x/2)^2 = 3$; since x/2 is rational iff x is rational, suffices to show that there is no rational number whose square is 3. Since 3 > 2, we showed in class that it suffices to show that there exists no $x > 1 \in \mathbb{Q}$ that can be written as $\frac{n}{m}$ with 0 < m < n; i.e., if $n, m \in \mathbb{N}$ and 0 < m < n, then $(\frac{n}{m})^2 \neq 3$.

We prove this by strong induction on n.

Fix *n*. By induction assume that if k < n and 0 < l < k, then $(\frac{k}{l})^2 \neq 3$. Fix m < n such that m > 0. Have to show that $(\frac{n}{m})^2 \neq 12$. Suppose for contradiction that $(\frac{n}{m})^2 = 3$. Then nn = 3mm, so $3 \mid nn$. Since 3 is prime in $3 \mid nn, 3 \mid n$ or $3 \mid n$, so $3 \mid n$. In other words, we can write n as $3k^2$. Thus (3k)(3k) = 3mm; by cancellation, 3kk = mm. So $3 \mid mm$, so $3 \mid m$. Since we can write m = 3l, we know that l < m. In addition, m < n, so l < n. Therefore, we get that

$$3 \cdot k \cdot k = 3 \cdot l \cdot 3 \cdot l$$
$$k \cdot k = 3 \cdot l \cdot l$$
$$\left(\frac{k}{l}\right)^{2} = 3$$

which contradicts the induction hypothesis. Thus, there exists on rational number whose square is 3; hence there exists no rational number whose square is 12. $\hfill \square$

Problem (Rudin 1.4). Let *E* be a nonempty subset of an ordered set; suppose α is a lower bound of *E* and β is an upper bound of *E*. Prove that $\alpha \leq \beta$.

Solution. By trichotomy, suffices to show that $a \geq b$. Suppose for contradiction that a > b. Since a is a lower bound, $\exists x \in E \text{ s.t. } x \geq a$. Since b is an upper bound and $x \in E, x \leq b$. Hence $a \leq b$, so we get a contradiction.

²Where k is a positive natural!

Problem (Rudin 1.5). Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that $\inf A = -\sup (-A)$.

Solution. Since A is nonempty and bounded below, and the reals are Dedekindcomplete, inf A exists. Let inf A = x. Thus, it suffices to show that $-x = \sup(-A)$. To do this, we must show two things:

First, that -x is an upper bound. Suppose for contradiction that $\exists a \in -A$ s.t. a > -x. By properties of order, -a < x. But since $a \in -A$, by definition of -A, we must have that $-a \in A$. But x is a lower bound for A, so -a < x is a contradiction. got 'em!

Second, that -x is the least upper bound. To do this, suppose that there is some $p \in \mathbb{R}$ such that p < x and p is an upper bound for -A. Since $p \in \mathbb{R}$, it's hard to work with, so let $q \in \mathbb{Q}$ be some rational such that $p < q < -x^3$. Since q > p, it suffices to show that q is not an upper bound for -A, i.e., $\exists \gamma \in -A$ s.t. $\gamma > q$. Consider $\gamma = \frac{-x+q}{2}$. It is easy to check that $q < \gamma < -x$. By properties of order, $-q > -\gamma > x$. Since x is an infimum for A, and we know that $-q \in A$, and $-\gamma$ is between the two, $-\gamma \in A$. Hence, $\gamma \in -A$. But $\gamma > q$, a contradiction. got 'em!

Problem (4.3.1). Prove **Proposition 4.3.3**: Let x, y, z be rational numbers. Then

- (a) We have $|x| \ge 0$. Also |x| = 0 if and only if x is 0.
- (b) We have $|x + y| \le |x| + |y|$.
- (c) We have the inequalities $-y \le x \le y$ if and only if $y \ge |x|$. In particular, we have $-|x| \le x \le |x|$.
- (d) We have |xy| = |x||y|. In particular, |-x| = |x|.
- (e) We have $d(x, y) \ge 0$. Also, d(x, y) = 0 if and only if x = y.
- (f) d(x, y) = d(y, x).
- (g) $d(x,z) \le d(x,y) + d(y,z)$.

Solution. (a). Part I $(|x| \ge 0)$:

Case I (x > 0): in this case, x is positive; hence, |x| = x > 0.

Case II (x < 0): in this case, x is negative; hence, |x| = -x. Since x is negative, x = -d for some positive rational d. Hence |x| = -(-d) = (-1)(-1)(d) = d > 0. Case III (x = 0): Then $|x| = 0 \ge 0$.

 $^{^{3}}$ We can do this due to the density of the rationals in the reals.

Part II:

 (\implies) : suppose that |x| = 0. Assume that in addition, x > 0. By definition of absolute value, |x| = x > 0; by trichotomy of order, |x| cannot both equal zero and be greater than zero; hence, we get a contradiction, so $x \neq 0$. Now assume that in addition, x < 0. By definition of absolute value, |x| = -x; by Part I, $|x| \ge 0$. Thus, either |x| = 0 or |x| > 0. But if |x| = 0, then because |x| = -x, x = -|x| = -0 = 0, a contradiction. Hence, if |x| = 0, $x \neq 0$ and $x \neq 0$, so by trichotomy, x = 0.

(\Leftarrow): suppose that x = 0. Then |x| = x = 0 by definition.

(b). If x = 0, then |x + y| = |0 + y| = |y| = 0 + |y| = |0| + |y| = |x| + |y|, with an identical argument holding if y = 0. Hence, we only need to consider the cases where x and y are positive or negative. Without loss of generality, assume y > x.

Case I (y > x > 0): Since y and x are both positive, x + y is also positive, so |x + y| = x + y, |x| = x, and |y| = y. Hence, $|x + y| = |x| + |y| \implies |x + y| \le |x| + |y|$.

Case II (y > 0 > x): Since y > x, by properties of order, y + x > 0. Hence, |x + y| = x + y. Since y > 0 and x < 0, |y| = y and |x| = -x, respectively. Thus, suffices to show that $x + y \le y - x$. Since x is negative, x = -d for some positive rational d. Thus, suffices to show that $y - d \le y - (-d) = y + d$, which is true by properties of order.

Case III (0 > y > x): y = -c for some positive rational c, and x = -d for some positive rational d. Hence |x + y| = |-c - d| = |-(c + d)|, and since c + d is positive, -(c+d) is negative, so |-(c+d)| = -(-(c+d)) = (-1)(-1)(c+d) = c+d. Also, |x| = |-d| = d, and |y| = |-c| = c. But $c+d \le c+d$, so $|-(c+d)| \le |x|+|y|$, so $|x + y| \le |x| + |y|$.

(c). (\implies): Suppose that $-y \le x \le y$. We have three cases:

Case I (x = 0): Thus $-y \le 0 \le y$. But |x| = 0, and $y \ge 0$, so $y \ge |x|$.

Case II (x > 0): |x| = x; thus, suffices to show that $y \ge x$. But this is given. Case III (x < 0): |x| = -x; thus, suffices to show that $y \ge -x$. We know that $-y \le x$; by properties of order, $-(-y) \ge -x \implies y \ge -x$.

(\Leftarrow): By (a), $|x| \ge 0$, so $y \ge 0$. We have three natural cases:

Case I (x = 0): In this case, $y \ge 0 \implies y \ge x$. By properties of order, $y \ge x \implies -y \le -x = -0 = 0 = x$. hence $-y \le x \le y$.

Case II (x > 0): In this case, |x| = x, so $y \ge x$. By properties of order, $-y \le -x$. Since x is positive, -x < x by properties of order (since x is positive), so $-y \le x \le y$. Case III (x < 0): In this case, x = -d for some positive rational d. Hence |x| = -x = -(-d) = d. Thus $y \ge d$. By properties of order, $-y \le -d$. Thus $-y \le x$. Since $-y \le x$ and $y \ge d$, suffices to show that $x \le d$. But $x = -d \le d$ is true since d is positive, so we are done.

(d). If x = 0, then $|xy| = |0y| = |0| = 0 = 0 \cdot |y| = |0||y| = |x||y|$; an identical argument holds when y = 0. Thus, we can assume that x and y are nonzero. Without loss of generality, let y > x. Then we have three cases:

Case I (y > x > 0): In this case, x and y are positive, so xy is positive; thus, |xy| = xy, |x| = x, and |y| = y. Since $xy = x \cdot y$, |xy| = |x||y|.

Case II (y > 0 > x): In this case, y is positive, and x = -d for some positive rational d. Hence xy is negative; in particular, xy = -dy = -(dy), where dy is a positive rational since d and y are both positive rationals. Thus |xy| = -(xy) = -(-dy) = dy. Since x is negative, |x| = -x = -(-d) = d; since y is positive, |y| = y. Combining the two, we get that |x||y| = dy = |xy|.

Case III (0 > y > x): Since x and y are negative, x = -d and y = -c for positive rationals d and c, respectively. Hence xy = (-d)(-c) = (-1)d(-1)c =dc; thus, xy is positive, so |xy| = xy = dc. Since x and y are negative, |x| = -x = -(-d) = d, and |y| = -y = -(-c) = c. Hence, |xy| = dc = |x||y|.

(e). By definition, d(x, y) = |x - y|. Since x - y is a rational number, by (a), $|x - y| \ge 0$. In addition, by (a), |x - y| = 0 if and only if x - y = 0. But d(x, y) = |x - y|, and $x - y = 0 \iff x = y$, so $d(x, y) = 0 \iff x = y$.

(f). d(x,y) = |x - y| = |-(y - x)| = |y - x| = d(y,x), where we used part (d) for the third equality.

(g). Let a = x - y, and b = y - z. By (b), $|a + b| \le |a| + |b|$. Hence, $|x - y + y - z| \le |x - y| + |y - z|$. Thus, $|x - z| \le d(x, y) + d(y, z)$. Thus, $d(x, z) \le d(x, y) + d(y, z)$.

Problem (4.3.3). Prove **Proposition 4.3.10**: Let x, y be rational numbers, and let n, m be natural numbers.

- (a) We have $x^n x^m = x^{n+m}$, $(x^n)^m = x^{nm}$, and $(xy)^n = x^n y^n$.
- (b) Suppose n > 0. Then we have $x^n = 0$ if and only if x = 0.
- (c) If $x \ge y \ge 0$, the $x^n \ge y^n \ge 0$. If $x > y \ge 0$ and n > 0, then $x^n > y^n \ge 0$.
- (d) We have $|x^n| = |x|^n$.

Solution. (a). For the first part, n and m are, conveniently, naturals, so we can fix n and induct on m.

Base case (m = 0): $x^n x^0 = x^n 1 = x^n = x^{n+0}$.

Inductive case: suppose $x^n x^m = x^{n+m}$. Then $x^n x^{m++} = x^n x^m x$ by definition of exponentiation, which equals $x^{n+m}x$ by the inductive hypothesis, which equals $x^{(n+m)++}$ by the definition of exponentiation, which closes the induction.

For the second part, we do the same thing:

Base case (m = 0): $(x^n)^m = (x^n)^0 = 1 = x^0 = x^{n0} = x^{nm}$. Inductive step: suppose $(x^n)^m = x^{nm}$. Then we get that

$$(x^{n})^{m++} = (x^{n})^{m} \cdot x^{n}$$
$$= x^{nm+n}$$
(By part I)
$$= x^{n \times (m++)}$$

which closes the induction.

For the last part, we do the same thing, but we induct on n: Base case (n = 0): $(xy)^n = (xy)^0 = 1 = 1 \cdot 1 = x^0 y^0 = x^n y^n$. Inductive step: suppose that $(xy)^n = x^n y^n$. Then we have that

$$(xy)^{n++} = (xy)^n (xy)$$
$$= x^n y^n xy$$
$$= x^n xy^n y$$
$$= x^{n++} y^{n++}$$

which closes the induction.

(b). (\implies): suppose $x^n = 0$; we want to show that x = 0. Let's do this by induction!

Base case (n = 1): we know that $x^1 = 0$; hence, $x^{0++} = 0$, so $x^0 \cdot x = 0$, so $1 \cdot x = 0$. We know at least one of 1, x must be zero by one of our lemmas of rational numbers; hence, x = 0.

Inductive step: suppose $x^n = 0 \implies x = 0$. Then $x^{n++} = 0 \implies x^n \cdot x = 0$, which implies that either x^n is zero or x is zero (or both). In the latter case, we're done. In the former case, x^n is zero so x = 0 by the inductive hypothesis; which closes the induction.

(\Leftarrow): Since n > 0, n = d + + for some natural d. If x = 0, $x^n = x^{d++} = x^d \cdot x = x^d \cdot 0 = 0$.

(c). We do the first part by inducting on n.

Base case (n = 0): Clearly $1 \ge 1 \ge 0$, so $x^n \ge y^n \ge 0$.

Inductive step: suppose that $x^n \ge y^n \ge 0$. Since $y^n \ge 0$ by the inductive hypothesis and $y \ge 0$ by assumption, $y^{n++} = y^n \times y \ge 0$. Since $x^n \ge y^n$ by the

inductive hypothesis and $x \ge y$ by assumption, $x^{n++} = x^n x \ge y^n y = y^{n++}$ by properties of order.

The second part is identical to the first part, except we start the induction with n = 1 and observe that if a > b and c > d, then ac > bd.

(d). Let's do this by induction. If we're lucky, we won't need to do casework. Base case (n = 0): $|x^0| = |1| = 1 = |x|^0 = |x|^n$.

Inductive step: suppose $|x^n| = |x|^n$. Then $|x^{n++}| = |x^n x| = |x^n| |x| = |x|^n |x| = |x|^n |x| = |x|^{n++}$, where we used properties of absolute value and the inductive hypothesis at the second and third equivalences, respectively.

Problem (4.3.4). Prove **Proposition 4.3.12**: Prove **Proposition 4.3.10** for integers instead of rationals.

Solution. (a). If n and m are positive, this follows from **Proposition 4.3.10**. If n is zero, $x^n x^m = x^0 x^m = 1 x^m = x^m = x^{0+m} = x^{n+m}$ where m is zero holds identically; $(x^0)^m = 1^m = 1 = x^0 = x^{0m} = x^{nm}$; $(xy)^0 = 1 = 1 \cdot 1 = x^0 y^0$. If m is negative, then m = -d for some positive integer d, so all the properties hold for n and d. The negative sign is equivalent at the end.

- (b). Same argument as (a).
- (c). Same argument as (b).
- (d). Same argument as (c).

Problem (4.3.5). Prove that $2^N \ge N$ for all positive integers N.

Proof. We proceed by induction (we can do this because positive integers=positive naturals, where induction holds).

Base case (n = 1): $2^1 = 2^0 \cdot 2 = 1 \cdot 2 = 2 \ge 1$.

Inductive step: suppose $2^N \ge N$. Then $2^{N++} = 2^N \cdot 2 \ge N \cdot 2$ by the inductive hypothesis. Thus, suffices to show that $N \cdot 2 \ge N + +$. We prove this using induction:

Inductive step: suppose $N \cdot 2 \ge N + +$. We want to show that $N + + \cdot 2 \ge (N + +) + +$. We do this as follows:

$$N + + \cdot 2 = (N + 1) \cdot 2$$

= $N \cdot 2 + 1 \cdot 2$
= $N \cdot 2 + 2$
 $\geq N + + + 2$ (By the inductive hypothesis)

$$= N + + + 1 + 1$$

= (N + +) + + + 1
$$\ge (N + +) + +.$$

This closes both inductions.

Problem (6). Prove for natural n, rational b, and rational $p \ge 0$, that if $p^n < b$ then there is a rational q > p so that $q^n < b$.

Proof. Consider the number $x \in \mathbb{R}$ such that $x^n = b$.

Claim 0.2. If $0 < a^n < b^n$ with a and b positive rationals, and n > 0, then a < b.

Proof. We prove this via induction.

Base case (n = 1): Clearly $a < b \implies a < b$.

Inductive step: suppose that $a^n < b^n \implies a < b$. Then if $a^{n++} < b^{n++}$, since a and b are positive, $a^n a < b^n b \implies a^n < b^n \frac{b}{a}$. If $\frac{b}{a} > 1$, then by properties of order, $a^n < b^n$; by the induction hypothesis, a < b, a contradiction. If $\frac{b}{a} = 1$, then b = a, then $a^n = b^n$, so $a^{n++} = b^{n++}$, contradicting trichotomy. Hence, $\frac{a}{b} < 1$, which means that a < b.

Using the density of the rationals in the reals, we can

Problem (7). Suppose $\mathbb{R}_{other} \supseteq \mathbb{Q}$, \geq_{other} is a linear order on \mathbb{R}_{other} agreeing with the usual order on \mathbb{Q} . Suppose \mathbb{R} with \leq_{other} is Dedekind complete, Archimedean, and the rationals are dense in \mathbb{R}_{other} . Prove that \mathbb{R}_{other} is isomorphic to \mathbb{R} over the rationals, meaning there is a bijection $f : \mathbb{R} \to \mathbb{R}_{other}$ so that $f|_{\mathbb{Q}}$ is the identity, and $x \leq y$ iff $f(x) \leq_{other} f(y)$.