# Analysis HW \#3 

Dyusha Gritsevskiy

January 2019

Problem (1). Prove (for integers) that if $a=q \cdot b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Solution. Consider the set $Y=\left\{r \in \mathbb{Z}^{+} \mid r\right.$ divides $\left.b\right\}$. We will make use of the following claim:
Claim 0.1. If $k \in Y$, then $k \mid q b+r$ iff $k \mid r$.
Proof. ( $\Longrightarrow$ ): Since $k \in Y, k \mid b$. Thus, $b=x k$ for some integer $x$. So $q b=k(q x)$, and $q x$ is a positive integer, so $k \mid q b$. Thus, $q b=y k$ for some integer $y^{1}$. Thus $q b+r=k y+r=k(y+r / k)$, so $k$ must divide $r$. Hence $k \mid r$.
$(\Longleftarrow)$ : Since $k \in Y, k \mid b$. Thus, $b=x k$ for some (positive) integer $x$. But also $k \mid r$, so $r=y k$ for some (positive) integer $y$. Hence $q b+r=q x k+y k=$ $k(q x+y)$; hnce, $k \mid q b+r$ since $q x+y$ is a positive integer.

Now, consider the set $X=\left\{r \in \mathbb{Z}^{+} \mid r\right.$ divides $\left.r\right\}$, and $Z=\left\{r \in \mathbb{Z}^{+} \mid\right.$ $r$ divides $q b+r\}$. By definition, $\operatorname{gcd}(b, r) \in Y$ and $\operatorname{gcd}(b, r) \in X$; by the claim, $\operatorname{gcd}(b, r) \in Z$. Again by definition, $\operatorname{gcd}(a, b)=\operatorname{gcd}(q b+r, b) \in Z$ and $\operatorname{gcd}(a, b) \in Y$; by the claim, $\operatorname{gcd}(a, b) \in X$. Hence, both greatest common divisors are in the set of possible divisors $X \cup Y \cup Z$. But since $X \cup Y \cup Z$ has a unique greatest element, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Problem (2). Prove that for any natural numbers $a, b$, there are integers $u, w$ so that $\operatorname{gcd}(a, b)=u \cdot a+w \cdot b$.

Solution. Write $a=b q+r$ and $b=r q_{1}+r_{1}$; continuing the Euclidean algorithm, we get that $r=r_{1} q_{2}+r_{2}, r_{1}=r_{2} q_{3}+r_{3}$, etc, until $r_{n-2}=r_{n-1} q_{n}+r_{n}$ and $r_{n-1}=0$. By (1), we know that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\operatorname{gcd}\left(r_{n-1}, 0\right)=r_{n-1}$. By induction, we can work upwards to write $r_{n-1}$ as a linear combination of $a$ and $b$; thus, $\operatorname{gcd}(a, b)$ is some integral linear combination of $a$ and $b$, as desired.

[^0]Problem (3). Let $p$ be prime (meaning a natural number so that the only natural numbers dividing $p$ are $p$ and 1). Suppose $p$ divides $a \cdot b$. Prove that $p$ divides $a$ or divides $b$.

## Solution.

Problem (Rudin 1.2). Prove that there is no rational number whose square is 12.

Solution. If $x^{2}=12$, then $x^{2}=2^{2} \cdot 3$, so $(x / 2)^{2}=3$; since $x / 2$ is rational iff $x$ is rational, suffices to show that there is no rational number whose square is 3 . Since $3>2$, we showed in class that it suffices to show that there exists no $x>1 \in \mathbb{Q}$ that can be written as $\frac{n}{m}$ with $0<m<n$; i.e., if $n, m \in \mathbb{N}$ and $0<m<n$, then $\left(\frac{n}{m}\right)^{2} \neq 3$.

We prove this by strong induction on $n$.
Fix $n$. By induction assume that if $k<n$ and $0<l<k$, then $\left(\frac{k}{l}\right)^{2} \neq 3$. Fix $m<n$ such that $m>0$. Have to show that $\left(\frac{n}{m}\right)^{2} \neq 12$. Suppose for contradiction that $\left(\frac{n}{m}\right)^{2}=3$. Then $n n=3 m m$, so $3 \mid n n$. Since 3 is prime in $3|n n, 3| n$ or $3 \mid n$, so $3 \mid n$. In other words, we can write $n$ as $3 k^{2}$. Thus $(3 k)(3 k)=3 \mathrm{~mm}$; by cancellation, $3 k k=m m$. So $3 \mid m m$, so $3 \mid m$. Since we can write $m=3 l$, we know that $l<m$. In addition, $m<n$, so $l<n$. Therefore, we get that

$$
\begin{aligned}
3 \cdot k \cdot k & =3 \cdot l \cdot 3 \cdot l \\
k \cdot k & =3 \cdot l \cdot l \\
\left(\frac{k}{l}\right)^{2} & =3
\end{aligned}
$$

which contradicts the induction hypothesis. Thus, there exists on rational number whose square is 3 ; hence there exists no rational number whose square is 12 .

Problem (Rudin 1.4). Let $E$ be a nonempty subset of an ordered set; suppose $\alpha$ is a lower bound of $E$ and $\beta$ is an upper bound of $E$. Prove that $\alpha \leq \beta$.

Solution. By trichotomy, suffices to show that $a \ngtr b$. Suppose for contradiction that $a>b$. Since $a$ is a lower bound, $\exists x \in E$ s.t. $x \geq a$. Since $b$ is an upper bound and $x \in E, x \leq b$. Hence $a \leq b$, so we get a contradiction.

[^1]Problem (Rudin 1.5). Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.

Solution. Since $A$ is nonempty and bounded below, and the reals are Dedekindcomplete, $\inf A$ exists. Let $\inf A=x$. Thus, it suffices to show that $-x=$ $\sup (-A)$. To do this, we must show two things:

First, that $-x$ is an upper bound. Suppose for contradiction that $\exists a \in-A$ s.t. $a>-x$. By properties of order, $-a<x$. But since $a \in-A$, by definition of $-A$, we must have that $-a \in A$. But $x$ is a lower bound for $A$, so $-a<x$ is a contradiction. got 'em!

Second, that $-x$ is the least upper bound. To do this, suppose that there is some $p \in \mathbb{R}$ such that $p<x$ and $p$ is an upper bound for $-A$. Since $p \in \mathbb{R}$, it's hard to work with, so let $q \in \mathbb{Q}$ be some rational such that $p<q<-x^{3}$. Since $q>p$, it suffices to show that $q$ is not an upper bound for $-A$, i.e., $\exists \gamma \in-A$ s.t. $\gamma>q$. Consider $\gamma=\frac{-x+q}{2}$. It is easy to check that $q<\gamma<-x$. By properties of order, $-q>-\gamma>x$. Since $x$ is an infimum for $A$, and we know that $-q \in A$, and $-\gamma$ is between the two, $-\gamma \in A$. Hence, $\gamma \in-A$. But $\gamma>q$, a contradiction. got 'em!

Problem (4.3.1). Prove Proposition 4.3.3: Let $x, y, z$ be rational numbers. Then
(a) We have $|x| \geq 0$. Also $|x|=0$ if and only if $x$ is 0 .
(b) We have $|x+y| \leq|x|+|y|$.
(c) We have the inequalities $-y \leq x \leq y$ if and only if $y \geq|x|$. In particular, we have $-|x| \leq x \leq|x|$.
(d) We have $|x y|=|x||y|$. In particular, $|-x|=|x|$.
(e) We have $d(x, y) \geq 0$. Also, $d(x, y)=0$ if and only if $x=y$.
(f) $d(x, y)=d(y, x)$.
(g) $d(x, z) \leq d(x, y)+d(y, z)$.

Solution. (a). Part I $(|x| \geq 0)$ :
Case I $(x>0)$ : in this case, $x$ is positive; hence, $|x|=x>0$.
Case II $(x<0)$ : in this case, $x$ is negative; hence, $|x|=-x$. Since $x$ is negative, $x=-d$ for some positive rational $d$. Hence $|x|=-(-d)=(-1)(-1)(d)=d>0$. Case III $(x=0)$ : Then $|x|=0 \geq 0$.

[^2]
## Part II:

$(\Longrightarrow)$ : suppose that $|x|=0$. Assume that in addition, $x>0$. By definition of absolute value, $|x|=x>0$; by trichotomy of order, $|x|$ cannot both equal zero and be greater than zero; hence, we get a contradiction, so $x \ngtr 0$. Now assume that in addition, $x<0$. By definition of absolute value, $|x|=-x$; by Part I, $|x| \geq 0$. Thus, either $|x|=0$ or $|x|>0$. But if $|x|=0$, then because $|x|=-x$, $x=-|x|=-0=0$, a contradiction. Hence, if $|x|=0, x \ngtr 0$ and $x \nless 0$, so by trichotomy, $x=0$.
$(\Longleftarrow)$ : suppose that $x=0$. Then $|x|=x=0$ by definition.
(b). If $x=0$, then $|x+y|=|0+y|=|y|=0+|y|=|0|+|y|=|x|+|y|$, with an identical argument holding if $y=0$. Hence, we only need to consider the cases where $x$ and $y$ are positive or negative. Without loss of generality, assume $y>x$.

Case $\mathrm{I}(y>x>0)$ : Since $y$ and $x$ are both positive, $x+y$ is also positive, so $|x+y|=x+y,|x|=x$, and $|y|=y$. Hence, $|x+y|=|x|+|y| \Longrightarrow|x+y| \leq$ $|x|+|y|$.

Case II $(y>0>x)$ : Since $y>x$, by properties of order, $y+x>0$. Hence, $|x+y|=x+y$. Since $y>0$ and $x<0,|y|=y$ and $|x|=-x$, respectively. Thus, suffices to show that $x+y \leq y-x$. Since $x$ is negative, $x=-d$ for some positive rational $d$. Thus, suffices to show that $y-d \leq y-(-d)=y+d$, which is true by properties of order.

Case III $(0>y>x): y=-c$ for some positive rational $c$, and $x=-d$ for some positive rational $d$. Hence $|x+y|=|-c-d|=|-(c+d)|$, and since $c+d$ is positive, $-(c+d)$ is negative, so $|-(c+d)|=-(-(c+d))=(-1)(-1)(c+d)=c+d$. Also, $|x|=|-d|=d$, and $|y|=|-c|=c$. But $c+d \leq c+d$, so $|-(c+d)| \leq|x|+|y|$, so $|x+y| \leq|x|+|y|$.
(c). $(\Longrightarrow)$ : Suppose that $-y \leq x \leq y$. We have three cases:

Case I $(x=0)$ : Thus $-y \leq 0 \leq y$. But $|x|=0$, and $y \geq 0$, so $y \geq|x|$.
Case II $(x>0):|x|=x$; thus, suffices to show that $y \geq x$. But this is given.
Case III $(x<0):|x|=-x$; thus, suffices to show that $y \geq-x$. We know that $-y \leq x$; by properties of order, $-(-y) \geq-x \Longrightarrow y \geq-x$.
( $\Longleftarrow)$ : By (a), $|x| \geq 0$, so $y \geq 0$. We have three natural cases:
Case I $(x=0)$ : In this case, $y \geq 0 \Longrightarrow y \geq x$. By properties of order, $y \geq x \Longrightarrow-y \leq-x=-0=0=x$. hence $-y \leq x \leq y$.

Case II $(x>0)$ : In this case, $|x|=x$, so $y \geq x$. By properties of order, $-y \leq-x$. Since $x$ is positive, $-x<x$ by properties of order (since $x$ is positive), so $-y \leq x \leq y$.

Case III $(x<0)$ : In this case, $x=-d$ for some positive rational $d$. Hence $|x|=-x=-(-d)=d$. Thus $y \geq d$. By properties of order, $-y \leq-d$. Thus $-y \leq x$. Since $-y \leq x$ and $y \geq d$, suffices to show that $x \leq d$. But $x=-d \leq d$ is true since $d$ is positive, so we are done.
(d). If $x=0$, then $|x y|=|0 y|=|0|=0=0 \cdot|y|=|0||y|=|x||y|$; an identical argument holds when $y=0$. Thus, we can assume that $x$ and $y$ are nonzero. Without loss of generality, let $y>x$. Then we have three cases:

Case I $(y>x>0)$ : In this case, $x$ and $y$ are positive, so $x y$ is positive; thus, $|x y|=x y,|x|=x$, and $|y|=y$. Since $x y=x \cdot y,|x y|=|x||y|$.

Case II $(y>0>x)$ : In this case, $y$ is positive, and $x=-d$ for some positive rational $d$. Hence $x y$ is negative; in particular, $x y=-d y=-(d y)$, where $d y$ is a positive rational since $d$ and $y$ are both positive rationals. Thus $|x y|=-(x y)=-(-d y)=d y$. Since $x$ is negative, $|x|=-x=-(-d)=d$; since $y$ is positive, $|y|=y$. Combining the two, we get that $|x||y|=d y=|x y|$.

Case III $(0>y>x)$ : Since $x$ and $y$ are negative, $x=-d$ and $y=-c$ for positive rationals $d$ and $c$, respectively. Hence $x y=(-d)(-c)=(-1) d(-1) c=$ $d c$; thus, $x y$ is positive, so $|x y|=x y=d c$. Since $x$ and $y$ are negative, $|x|=-x=-(-d)=d$, and $|y|=-y=-(-c)=c$. Hence, $|x y|=d c=|x||y|$.
(e). By definition, $d(x, y)=|x-y|$. Since $x-y$ is a rational number, by (a), $|x-y| \geq 0$. In addition, by (a), $|x-y|=0$ if and only if $x-y=0$. But $d(x, y)=|x-y|$, and $x-y=0 \Longleftrightarrow x=y$, so $d(x, y)=0 \Longleftrightarrow x=y$.
(f). $d(x, y)=|x-y|=|-(y-x)|=|y-x|=d(y, x)$, where we used part (d) for the third equality.
(g). Let $a=x-y$, and $b=y-z$. By (b), $|a+b| \leq|a|+|b|$. Hence, $|x-y+y-z| \leq|x-y|+|y-z|$. Thus, $|x-z| \leq d(x, y)+d(y, z)$. Thus, $d(x, z) \leq d(x, y)+d(y, z)$.

Problem (4.3.3). Prove Proposition 4.3.10: Let $x, y$ be rational numbers, and let $n, m$ be natural numbers.
(a) We have $x^{n} x^{m}=x^{n+m},\left(x^{n}\right)^{m}=x^{n m}$, and $(x y)^{n}=x^{n} y^{n}$.
(b) Suppose $n>0$. Then we have $x^{n}=0$ if and only if $x=0$.
(c) If $x \geq y \geq 0$, the $x^{n} \geq y^{n} \geq 0$. If $x>y \geq 0$ and $n>0$, then $x^{n}>y^{n} \geq 0$.
(d) We have $\left|x^{n}\right|=|x|^{n}$.

Solution. (a). For the first part, $n$ and $m$ are, conveniently, naturals, so we can fix $n$ and induct on $m$.

Base case $(m=0): x^{n} x^{0}=x^{n} 1=x^{n}=x^{n+0}$.

Inductive case: suppose $x^{n} x^{m}=x^{n+m}$. Then $x^{n} x^{m++}=x^{n} x^{m} x$ by definition of exponentiation, which equals $x^{n+m} x$ by the inductive hypothesis, which equals $x^{(n+m)++}$ by the definition of exponentiation, which closes the induction.

For the second part, we do the same thing:
Base case $(m=0):\left(x^{n}\right)^{m}=\left(x^{n}\right)^{0}=1=x^{0}=x^{n 0}=x^{n m}$.
Inductive step: suppose $\left(x^{n}\right)^{m}=x^{n m}$. Then we get that

$$
\begin{aligned}
\left(x^{n}\right)^{m++} & =\left(x^{n}\right)^{m} \cdot x^{n} \\
& =x^{n m} \cdot x^{n} \\
& =x^{n m+n} \\
& =x^{n \times(m++)}
\end{aligned}
$$

(By part I)
which closes the induction.
For the last part, we do the same thing, but we induct on $n$ :
Base case $(n=0):(x y)^{n}=(x y)^{0}=1=1 \cdot 1=x^{0} y^{0}=x^{n} y^{n}$.
Inductive step: suppose that $(x y)^{n}=x^{n} y^{n}$. Then we have that

$$
\begin{aligned}
(x y)^{n++} & =(x y)^{n}(x y) \\
& =x^{n} y^{n} x y \\
& =x^{n} x y^{n} y \\
& =x^{n++} y^{n++}
\end{aligned}
$$

which closes the induction.
(b). $(\Longrightarrow)$ : suppose $x^{n}=0$; we want to show that $x=0$. Let's do this by induction!

Base case $(n=1)$ : we know that $x^{1}=0$; hence, $x^{0++}=0$, so $x^{0} \cdot x=0$, so $1 \cdot x=0$. We know at least one of $1, x$ must be zero by one of our lemmas of rational numbers; hence, $x=0$.

Inductive step: suppose $x^{n}=0 \Longrightarrow x=0$. Then $x^{n++}=0 \Longrightarrow x^{n} \cdot x=0$, which implies that either $x^{n}$ is zero or $x$ is zero (or both). In the latter case, we're done. In the former case, $x^{n}$ is zero so $x=0$ by the inductive hypothesis; which closes the induction.
$(\Longleftarrow)$ : Since $n>0, n=d++$ for some natural $d$. If $x=0, x^{n}=x^{d++}=$ $x^{d} \cdot x=x^{d} \cdot 0=0$.
(c). We do the first part by inducting on $n$.

Base case $(n=0)$ : Clearly $1 \geq 1 \geq 0$, so $x^{n} \geq y^{n} \geq 0$.
Inductive step: suppose that $x^{n} \geq y^{n} \geq 0$. Since $y^{n} \geq 0$ by the inductive hypothesis and $y \geq 0$ by assumption, $y^{n++}=y^{n} \times y \geq 0$. Since $x^{n} \geq y^{n}$ by the
inductive hypothesis and $x \geq y$ by assumption, $x^{n++}=x^{n} x \geq y^{n} y=y^{n++}$ by properties of order.

The second part is identical to the first part, except we start the induction with $n=1$ and observe that if $a>b$ and $c>d$, then $a c>b d$.
(d). Let's do this by induction. If we're lucky, we won't need to do casework.

Base case $(n=0):\left|x^{0}\right|=|1|=1=|x|^{0}=|x|^{n}$.
Inductive step: suppose $\left|x^{n}\right|=|x|^{n}$. Then $\left|x^{n++}\right|=\left|x^{n} x\right|=\left|x^{n}\right||x|=$ $|x|^{n}|x|=|x|^{n++}$, where we used properties of absolute value and the inductive hypothesis at the second and third equivalences, respectively.

Problem (4.3.4). Prove Proposition 4.3.12: Prove Proposition 4.3 .10 for integers instead of rationals.

Solution. (a). If $n$ and $m$ are positive, this follows from Proposition 4.3.10. If $n$ is zero, $x^{n} x^{m}=x^{0} x^{m}=1 x^{m}=x^{m}=x^{0+m}=x^{n+m}$ where $m$ is zero holds identically; $\left(x^{0}\right)^{m}=1^{m}=1=x^{0}=x^{0 m}=x^{n m} ;(x y)^{0}=1=1 \cdot 1=x^{0} y^{0}$. If $m$ is negative, then $m=-d$ for some positive integer $d$, so all the properties hold for $n$ and $d$. The negative sign is equivalent at the end.
(b). Same argument as (a).
(c). Same argument as (b).
(d). Same argument as (c).

Problem (4.3.5). Prove that $2^{N} \geq N$ for all positive integers $N$.
Proof. We proceed by induction (we can do this because positive integers=positive naturals, where induction holds).

Base case $(n=1): 2^{1}=2^{0} \cdot 2=1 \cdot 2=2 \geq 1$.
Inductive step: suppose $2^{N} \geq N$. Then $2^{N++}=2^{N} \cdot 2 \geq N \cdot 2$ by the inductive hypothesis. Thus, suffices to show that $N \cdot 2 \geq N++$. We prove this using induction:

Base case $(n=1): N \cdot 2=1 \cdot 2=2 \geq 2=1++=N++$.
Inductive step: suppose $N \cdot 2 \geq N++$. We want to show that $N++\cdot 2 \geq$ $(N++)++$. We do this as follows:

$$
\begin{aligned}
N++\cdot 2 & =(N+1) \cdot 2 \\
& =N \cdot 2+1 \cdot 2 \\
& =N \cdot 2+2 \\
& \geq N+++2 \quad \text { (By the inductive hypothesis) }
\end{aligned}
$$

$$
\begin{aligned}
& =N+++1+1 \\
& =(N++)+++1 \\
& \geq(N++)++.
\end{aligned}
$$

This closes both inductions.
Problem (6). Prove for natural $n$, rational $b$, and rational $p \geq 0$, that if $p^{n}<b$ then there is a rational $q>p$ so that $q^{n}<b$.

Proof. Consider the number $x \in \mathbb{R}$ such that $x^{n}=b$.
Claim 0.2. If $0<a^{n}<b^{n}$ with $a$ and $b$ positive rationals, and $n>0$, then $a<b$.

Proof. We prove this via induction.
Base case $(n=1)$ : Clearly $a<b \Longrightarrow a<b$.
Inductive step: suppose that $a^{n}<b^{n} \Longrightarrow a<b$. Then if $a^{n++}<b^{n++}$, since $a$ and $b$ are positive, $a^{n} a<b^{n} b \Longrightarrow a^{n}<b^{n} \frac{b}{a}$. If $\frac{b}{a}>1$, then by properties of order, $a^{n}<b^{n}$; by the induction hypothesis, $a<b$, a contradiction. If $\frac{b}{a}=1$, then $b=a$, then $a^{n}=b^{n}$, so $a^{n++}=b^{n++}$, contradicting trichotomy. Hence, $\frac{a}{b}<1$, which means that $a<b$.

Using the density of the rationals in the reals, we can
Problem (7). Suppose $\mathbb{R}_{\text {other }} \supseteq \mathbb{Q}, \geq$ other is a linear order on $\mathbb{R}_{\text {other }}$ agreeing with the usual order on $\mathbb{Q}$. Suppose $\mathbb{R}$ with $\leq_{\text {other }}$ is Dedekind complete, Archimedean, and the rationals are dense in $\mathbb{R}_{\text {other }}$. Prove that $\mathbb{R}_{\text {other }}$ is isomorphic to $\mathbb{R}$ over the rationals, meaning there is a bijection $f: \mathbb{R} \rightarrow \mathbb{R}_{\text {other }}$ so that $\left.f\right|_{\mathbb{Q}}$ is the identity, and $x \leq y$ iff $f(x) \leq_{\text {other }} f(y)$.


[^0]:    ${ }^{1}$ In particular, $y=q x$.

[^1]:    ${ }^{2}$ Where $k$ is a positive natural!

[^2]:    ${ }^{3}$ We can do this due to the density of the rationals in the reals.

