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Problem (1). Prove (for integers) that if a = ¢ - b+ r then ged(a, b) = ged (b, r).

Solution. Consider the set Y = {r € Z" | r divides b}. We will make use of the

following claim:

Claim 0.1. If k € Y, then k | gb +r iff k | r.

Proof. ( = ): Since k € Y, k | b. Thus, b = zk for some integer x. So
gb = k(gx), and gz is a positive integer, so k | gb. Thus, gb = yk for some integer
y'. Thus ¢gb+1r = ky +r = k(y + r/k), so k must divide r. Hence k | r.
(<=): Since k € Y, k | b. Thus, b = xk for some (positive) integer x. But
also k | r, so r = yk for some (positive) integer y. Hence ¢b + r = qzk + yk =
k(qx + y); hnce, k | gb + r since qx + y is a positive integer. O

Now, consider the set X = {r € Z* | r divides r}, and Z = {r € Z" |
r divides ¢b + r}. By definition, ged(b,r) € Y and ged(b,r) € X; by the
claim, ged(b,r) € Z. Again by definition, ged(a,b) = ged(gb + r,b) € Z and
ged(a,b) € Y; by the claim, ged(a,b) € X. Hence, both greatest common
divisors are in the set of possible divisors X UY U Z. But since X UY U Z has a
unique greatest element, ged(a,b) = ged(b, 7). O

Problem (2). Prove that for any natural numbers a, b, there are integers u, w
so that ged(a,b) =u-a+ w-b.

Solution. Write a = bg+r and b = rq; + r1; continuing the Euclidean algorithm,
we get that r = riqs + ro, 11 = rogqs + 13, etc, until r,_o = 1,19, + r, and
rn—1 = 0. By (1), we know that ged(a,b) = ged(b, ) = ged(rp—1,0) = rp—1. By
induction, we can work upwards to write r,_1 as a linear combination of a and

b; thus, ged(a, b) is some integral linear combination of a and b, as desired. O

Hn particular, y = gz.



Problem (3). Let p be prime (meaning a natural number so that the only
natural numbers dividing p are p and 1). Suppose p divides a - b. Prove that p
divides a or divides b.

Solution. O

Problem (Rudin 1.2). Prove that there is no rational number whose square is
12.

Solution. If 2% = 12, then x? = 22 -3, so (z/2)? = 3; since z/2 is rational iff
x is rational, suffices to show that there is no rational number whose square
is 3. Since 3 > 2, we showed in class that it suffices to show that there exists
no xz > 1 € Q that can be written as > with 0 <m < n; i.e., if n,m € N and
0 <m < n, then (£)% # 3.

We prove this by strong induction on n.

Fix n. By induction assume that if k < n and 0 < [ < k, then (¥)? # 3.
Fix m < n such that m > 0. Have to show that (%)2 # 12. Suppose for
contradiction that (£)? = 3. Then nn = 3mm, so 3 | nn. Since 3 is prime in
3| nn,3|nor3|n,so3|n Inother words, we can write n as 3k*. Thus
(3k)(3k) = 3mm; by cancellation, 3kk = mm. So 3 | mm, so 3 | m. Since we
can write m = 3, we know that [ < m. In addition, m < n, so I < n. Therefore,

we get that
3-k-k=3-1-3-1
k-k=3-1-1

(Y -

which contradicts the induction hypothesis. Thus, there exists on rational
number whose square is 3; hence there exists no rational number whose square
is 12. U

Problem (Rudin 1.4). Let E be a nonempty subset of an ordered set; suppose
« is a lower bound of E and f is an upper bound of E. Prove that o < .

Solution. By trichotomy, suffices to show that a » b. Suppose for contradiction
that @ > b. Since a is a lower bound, dz € F s.t. & > a. Since b is an upper

bound and = € E, x < b. Hence a < b, so we get a contradiction. O

2Where k is a positive natural!



Problem (Rudin 1.5). Let A be a nonempty set of real numbers which is
bounded below. Let —A be the set of all numbers —z, where x € A. Prove that
inf A = —sup (—A).

Solution. Since A is nonempty and bounded below, and the reals are Dedekind-
complete, inf A exists. Let inf A = z. Thus, it suffices to show that —z =
sup (—A). To do this, we must show two things:

First, that —z is an upper bound. Suppose for contradiction that Ja € — A
s.t. a > —x. By properties of order, —a < x. But since a € — A, by definition of
—A, we must have that —a € A. But z is a lower bound for A, so —a < x is a
contradiction. got ’em!

Second, that —x is the least upper bound. To do this, suppose that there is
some p € R such that p < z and p is an upper bound for —A. Since p € R, it’s
hard to work with, so let ¢ € Q be some rational such that p < ¢ < —z”. Since
q > p, it suffices to show that ¢ is not an upper bound for —A4, i.e., 3y € —A s.t.
v > gq. Consider v = %Jrq. It is easy to check that ¢ < v < —z. By properties
of order, —q > —7v > . Since z is an infimum for A, and we know that —q € A,
and —+ is between the two, —y € A. Hence, v € —A. But v > ¢, a contradiction.
got ’em! O

Problem (4.3.1). Prove Proposition 4.3.3: Let z,y, z be rational numbers.
Then

(a) We have || > 0. Also |z| = 0 if and only if = is 0.
(b) We have |z +y| < |z| + |y
(c) We have the inequalities —y < 2 < y if and only if y > |z|. In particular,
we have —|z| <z < |x|.
) We have |zy| = |z||y|. In particular, |—z| = |z|.
) We have d(x,y) > 0. Also, d(z,y) = 0 if and only if z = y.
() d(z,y) = d(y, ).
) d(z,2) < d(z,y) + d(y, 2).
Solution. (a). Part I (Jz| > 0):
Case I (z > 0): in this case, z is positive; hence, |z| =z > 0.
Case II (z < 0): in this case, x is negative; hence, |x| = —z. Since z is negative,
x = —d for some positive rational d. Hence |z| = —(—d) = (-1)(-=1)(d) = d > 0.
Case IIT (x = 0): Then |z| =0 > 0.

3We can do this due to the density of the rationals in the reals.



Part II:

(= ): suppose that |z| = 0. Assume that in addition, = > 0. By definition of
absolute value, |z| = z > 0; by trichotomy of order, |z| cannot both equal zero
and be greater than zero; hence, we get a contradiction, so x ¥ 0. Now assume
that in addition, < 0. By definition of absolute value, |z| = —z; by Part I,
|x| > 0. Thus, either |z| = 0 or |z| > 0. But if |x| = 0, then because |z| = —=z,
x = —|z| = —0 = 0, a contradiction. Hence, if |z| =0, z ¥ 0 and = £ 0, so by
trichotomy, z = 0.

( <= ): suppose that z = 0. Then |z| = z = 0 by definition.

(b). If # =0, then [z +y| = [0+y[ = |y| = 0+ [y| = 0] + [y| = [=] + [y], with
an identical argument holding if y = 0. Hence, we only need to consider the
cases where x and y are positive or negative. Without loss of generality, assume
Yy >x.

Case I (y > x > 0): Since y and x are both positive, x + y is also positive, so
|z +yl =2 +y, [z| =z, and |y| = y. Hence, |z +y| = [z[+|y| = |z +y| <
|| + [yl.

Case II (y > 0 > x): Since y > z, by properties of order, y + x > 0. Hence,
|z +y| =x+y. Since y > 0 and z <0, |y| = y and |z| = —z, respectively. Thus,
suffices to show that x +y < y — z. Since x is negative, x = —d for some positive
rational d. Thus, suffices to show that y — d <y — (—d) = y + d, which is true
by properties of order.

Case III (0 > y > x): y = —c for some positive rational ¢, and x = —d for
some positive rational d. Hence |x 4+ y| = |—-c—d| = |—(¢+d)|, and since c+d is
positive, —(c+d) is negative, so |—(c+d)| = —(—(c+d)) = (=1)(=1)(c+d) = c+d.
Also, |z| = |—d| = d, and |y| = |—c| = ¢. But c+d < c+d, so |—(c+d)| < |z|+]y|,
so [z +] < Ja] + [yl

(c). (= ): Suppose that —y < z <y. We have three cases:

Case I (x =0): Thus —y <0 <y. But || =0, and y > 0, so y > |z|.

Case IT (x > 0): |z| = z; thus, suffices to show that y > x. But this is given.

Case IIT (z < 0): || = —=x; thus, suffices to show that y > —x. We know
that —y < x; by properties of order, —(—y) > —z = y > —z.

(<=): By (a), |x| > 0, so y > 0. We have three natural cases:

Case I (x = 0): In this case, y > 0 = y > x. By properties of order,
y>zr = —y<—ax=-0=0=u2. hence —y <z <y.

Case II (z > 0): In this case, |x| = z, so y > z. By properties of order,
—y < —z. Since x is positive, —x < z by properties of order (since x is positive),

so —y <x<y.



Case IIT (z < 0): In this case, = —d for some positive rational d. Hence
|| = —x = —(—d) = d. Thus y > d. By properties of order, —y < —d. Thus
—y < z. Since —y < x and y > d, suffices to show that x < d. But z = —d < d
is true since d is positive, so we are done.

(d). If =0, then |zy| = [0y| = 10| =0=0-|y| = |0|ly| = |z||y|; an identical
argument holds when y = 0. Thus, we can assume that x and y are nonzero.
Without loss of generality, let ¥y > x. Then we have three cases:

Case I (y > = > 0): In this case, x and y are positive, so xy is positive; thus,
lzy| = 2y, |z] = 2, and |y| = y. Since zy =z -y, |zy| = |z|[yl.

Case II (y > 0 > z): In this case, y is positive, and © = —d for some
positive rational d. Hence xy is negative; in particular, zy = —dy = —(dy),
where dy is a positive rational since d and y are both positive rationals. Thus
|zy| = —(vy) = —(—dy) = dy. Since x is negative, |z| = —z = —(—d) = d; since
y is positive, |y| = y. Combining the two, we get that |z||y| = dy = |zy|.

Case IIT (0 > y > x): Since z and y are negative, = —d and y = —c for
positive rationals d and ¢, respectively. Hence zy = (—d)(—c) = (—=1)d(—1)c =
dc; thus, xy is positive, so |xy| = zy = dc. Since z and y are negative,
|| = —x = —(—d) =d, and |y| = —y = —(—¢) = ¢. Hence, |zy| = dc = |z]||y|.

(e). By definition, d(x,y) = |z — y|. Since z — y is a rational number, by
(a), |x —y| > 0. In addition, by (a), |z —y| = 0 if and only if z —y = 0. But
dlz,y)=lr—yl,andz —y=0 <= z=y,sod(z,y) =0 < z=y.

). d(z,y) = |z —y| = |-(y — z)| = |y — x| = d(y, z), where we used part
(d) for the third equality.

(g). Leta=ax—y,and b =y — 2. By (b), |a+b| < |a| +|b]. Hence,
e —y+y—2z2 <|z—y|l+|y— 2. Thus, |z — 2| < d(z,y) + d(y, z). Thus,
d(z,z) < d(z,y) + d(y, z). O

Problem (4.3.3). Prove Proposition 4.3.10: Let z,y be rational numbers,

and let n, m be natural numbers.

(a) We have z"a™ = x"t™ (™)™ = 2™ and (zy)" = 2"y".

(b) Suppose n > 0. Then we have 2™ = 0 if and only if = 0.

(¢c) fx>y>0,thea™>y” >0. f £ >y >0and n >0, then z" > y™ > 0.
(d) We have |z"™| = |z|".

Solution. (a). For the first part, n and m are, conveniently, naturals, so we can
fix n and induct on m.

Base case (m = 0): 2720 = 21 = 2" = 2" 0.



Inductive case: suppose z"z™ = ™. Then z"z™TT = 2"2™z by defini-
tion of exponentiation, which equals " t™z by the inductive hypothesis, which
equals (") ++ by the definition of exponentiation, which closes the induction.

For the second part, we do the same thing:

Base case (m = 0): (z")™ = (2")° =1 =2° = 20 = g™,

Inductive step: suppose (z™)™ = ™. Then we get that

(xn)m++ — (wn)m L xn

= gmtn (By part I)

which closes the induction.

For the last part, we do the same thing, but we induct on n:

Base case (n =0): (zy)" = (zy)° =1=1-1= 2040 = z"y".

Inductive step: suppose that (zy)™ = z"y™. Then we have that
(zy)" ™" = (2y)" (2y)

"y xy

mnxyny

— zn++yn++

which closes the induction.

(b). (= ): suppose 2™ = 0; we want to show that x = 0. Let’s do this by
induction!

Base case (n = 1): we know that 2! = 0; hence, 2’7+ =0, so

1-2 =0. We know at least one of 1,z must be zero by one of our lemmas of

O.2=0,s0

rational numbers; hence, x = 0.

Inductive step: suppose 2" =0 = x =0. Then 2" =0 = z" .2 =0,
which implies that either 2" is zero or x is zero (or both). In the latter case,
we're done. In the former case, " is zero so x = 0 by the inductive hypothesis;
which closes the induction.

(<= ): Since n > 0, n = d + + for some natural d. If z =0, 2" = 29T+ =
¢ r=21.0=0.

(¢). We do the first part by inducting on n.

Base case (n =0): Clearly 1 >1 >0, so z™ > y™ > 0.

Inductive step: suppose that ™ > y™ > 0. Since y™ > 0 by the inductive
hypothesis and y > 0 by assumption, "™ = y™ x y > 0. Since 2" > y" by the



inductive hypothesis and = > y by assumption, z"t+ = 2"z > y"y = y**+ by
properties of order.

The second part is identical to the first part, except we start the induction
with n = 1 and observe that if a > b and ¢ > d, then ac > bd.

(d). Let’s do this by induction. If we’re lucky, we won’t need to do casework.

Base case (n =0): [2°] = [1] =1 = |z|° = |z|™.

Inductive step: suppose |z"| = |z|®. Then |x"TF| = |2"z| = |2"||z| =
|z|"|z| = |z|"*T, where we used properties of absolute value and the inductive
hypothesis at the second and third equivalences, respectively. O

Problem (4.3.4). Prove Proposition 4.3.12: Prove Proposition 4.3.10 for

integers instead of rationals.

Solution. (a). If n and m are positive, this follows from Proposition 4.3.10.
If n is zero, 2"2™ = 2%2™ = 12™ = 2™ = 297™ = 2" *t™ where m is zero holds
identically; (z°)" =1" =1=20 =2 =2"™; (2y)’ =1=1-1=2%" If m
is negative, then m = —d for some positive integer d, so all the properties hold
for n and d. The negative sign is equivalent at the end.

(b). Same argument as (a).

(c). Same argument as (b).

(d). Same argument as (c). O
Problem (4.3.5). Prove that 2 > N for all positive integers N.

Proof. We proceed by induction (we can do this because positive integers=positive
naturals, where induction holds).

Base case (n=1): 21 =20.2=1.2=2>1.

Inductive step: suppose 2V > N. Then 2V*t+ = 2V .2 > N .2 by the
inductive hypothesis. Thus, suffices to show that N -2 > N + +. We prove this
using induction:

Basecase (n=1): N-2=1-2=2>2=1++=N++.

Inductive step: suppose N -2 > N + +. We want to show that N + + -2 >
(N ++) + +. We do this as follows:

N++:2=(N+1)-2
=N-2+1-2
—N-242
>N+++2 (By the inductive hypothesis)



=N+++1+1
=(N++)+++1
> (N ++4)++.

This closes both inductions. O

Problem (6). Prove for natural n, rational b, and rational p > 0, that if p™ < b
then there is a rational ¢ > p so that ¢ < b.

Proof. Consider the number x € R such that 2™ = b.

Claim 0.2. If 0 < a™ < b"™ with a and b positive rationals, and n > 0, then
a <b.

Proof. We prove this via induction.

Base case (n =1): Clearly a <b = a <b.

Inductive step: suppose that a” < b® = a < b. Then if a®*+ < b7,
since a and b are positive, a"a < b"b = a" < b”g. If g > 1, then by
properties of order, a™ < b™; by the induction hypothesis, a < b, a contradiction.
If 2 =1, then b = a, then a™ = b", so a"** = b"** contradicting trichotomy.

Hence, § < 1, which means that a <b. O
Using the density of the rationals in the reals, we can O

Problem (7). Suppose Rother 2 Q, >other 18 & linear order on Ryther agree-
ing with the usual order on Q. Suppose R with <. ner is Dedekind complete,
Archimedean, and the rationals are dense in Ryiner. Prove that Rogner iS iSomor-
phic to R over the rationals, meaning there is a bijection f : R — Rytper S0 that
flo is the identity, and = < y iff f(z) <other f(y)-



