
Analysis HW #3

Dyusha Gritsevskiy

January 2019

Problem (1). Prove (for integers) that if a = q · b+ r then gcd(a, b) = gcd(b, r).

Solution. Consider the set Y = {r ∈ Z+ | r divides b}. We will make use of the
following claim:

Claim 0.1. If k ∈ Y , then k | qb+ r iff k | r.

Proof. ( =⇒ ): Since k ∈ Y , k | b. Thus, b = xk for some integer x. So
qb = k(qx), and qx is a positive integer, so k | qb. Thus, qb = yk for some integer
y1. Thus qb+ r = ky + r = k(y + r/k), so k must divide r. Hence k | r.

(⇐= ): Since k ∈ Y , k | b. Thus, b = xk for some (positive) integer x. But
also k | r, so r = yk for some (positive) integer y. Hence qb+ r = qxk + yk =
k(qx+ y); hnce, k | qb+ r since qx+ y is a positive integer.

Now, consider the set X = {r ∈ Z+ | r divides r}, and Z = {r ∈ Z+ |
r divides qb + r}. By definition, gcd(b, r) ∈ Y and gcd(b, r) ∈ X; by the
claim, gcd(b, r) ∈ Z. Again by definition, gcd(a, b) = gcd(qb + r, b) ∈ Z and
gcd(a, b) ∈ Y ; by the claim, gcd(a, b) ∈ X. Hence, both greatest common
divisors are in the set of possible divisors X ∪ Y ∪Z. But since X ∪ Y ∪Z has a
unique greatest element, gcd(a, b) = gcd(b, r).

Problem (2). Prove that for any natural numbers a, b, there are integers u,w
so that gcd(a, b) = u · a+ w · b.

Solution. Write a = bq+ r and b = rq1 + r1; continuing the Euclidean algorithm,
we get that r = r1q2 + r2, r1 = r2q3 + r3, etc, until rn−2 = rn−1qn + rn and
rn−1 = 0. By (1), we know that gcd(a, b) = gcd(b, r) = gcd(rn−1, 0) = rn−1. By
induction, we can work upwards to write rn−1 as a linear combination of a and
b; thus, gcd(a, b) is some integral linear combination of a and b, as desired.

1In particular, y = qx.
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Problem (3). Let p be prime (meaning a natural number so that the only
natural numbers dividing p are p and 1). Suppose p divides a · b. Prove that p
divides a or divides b.

Solution.

Problem (Rudin 1.2). Prove that there is no rational number whose square is
12.

Solution. If x2 = 12, then x2 = 22 · 3, so (x/2)2 = 3; since x/2 is rational iff
x is rational, suffices to show that there is no rational number whose square
is 3. Since 3 > 2, we showed in class that it suffices to show that there exists
no x > 1 ∈ Q that can be written as n

m with 0 < m < n; i.e., if n,m ∈ N and
0 < m < n, then ( n

m )2 6= 3.
We prove this by strong induction on n.
Fix n. By induction assume that if k < n and 0 < l < k, then (k

l )2 6= 3.
Fix m < n such that m > 0. Have to show that ( n

m )2 6= 12. Suppose for
contradiction that ( n

m )2 = 3. Then nn = 3mm, so 3 | nn. Since 3 is prime in
3 | nn, 3 | n or 3 | n, so 3 | n. In other words, we can write n as 3k2. Thus
(3k)(3k) = 3mm; by cancellation, 3kk = mm. So 3 | mm, so 3 | m. Since we
can write m = 3l, we know that l < m. In addition, m < n, so l < n. Therefore,
we get that

3 · k · k = 3 · l · 3 · l

k · k = 3 · l · l(
k

l

)2
= 3

which contradicts the induction hypothesis. Thus, there exists on rational
number whose square is 3; hence there exists no rational number whose square
is 12.

Problem (Rudin 1.4). Let E be a nonempty subset of an ordered set; suppose
α is a lower bound of E and β is an upper bound of E. Prove that α ≤ β.

Solution. By trichotomy, suffices to show that a ≯ b. Suppose for contradiction
that a > b. Since a is a lower bound, ∃x ∈ E s.t. x ≥ a. Since b is an upper
bound and x ∈ E, x ≤ b. Hence a ≤ b, so we get a contradiction.

2Where k is a positive natural!
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Problem (Rudin 1.5). Let A be a nonempty set of real numbers which is
bounded below. Let −A be the set of all numbers −x, where x ∈ A. Prove that
inf A = − sup (−A).

Solution. Since A is nonempty and bounded below, and the reals are Dedekind-
complete, inf A exists. Let inf A = x. Thus, it suffices to show that −x =
sup (−A). To do this, we must show two things:

First, that −x is an upper bound. Suppose for contradiction that ∃a ∈ −A
s.t. a > −x. By properties of order, −a < x. But since a ∈ −A, by definition of
−A, we must have that −a ∈ A. But x is a lower bound for A, so −a < x is a
contradiction. got ’em!

Second, that −x is the least upper bound. To do this, suppose that there is
some p ∈ R such that p < x and p is an upper bound for −A. Since p ∈ R, it’s
hard to work with, so let q ∈ Q be some rational such that p < q < −x3. Since
q > p, it suffices to show that q is not an upper bound for −A, i.e., ∃γ ∈ −A s.t.
γ > q. Consider γ = −x+q

2 . It is easy to check that q < γ < −x. By properties
of order, −q > −γ > x. Since x is an infimum for A, and we know that −q ∈ A,
and −γ is between the two, −γ ∈ A. Hence, γ ∈ −A. But γ > q, a contradiction.
got ’em!

Problem (4.3.1). Prove Proposition 4.3.3: Let x, y, z be rational numbers.
Then

(a) We have |x| ≥ 0. Also |x| = 0 if and only if x is 0.
(b) We have |x+ y| ≤ |x|+ |y|.
(c) We have the inequalities −y ≤ x ≤ y if and only if y ≥ |x|. In particular,

we have −|x| ≤ x ≤ |x|.
(d) We have |xy| = |x||y|. In particular, |−x| = |x|.
(e) We have d(x, y) ≥ 0. Also, d(x, y) = 0 if and only if x = y.
(f) d(x, y) = d(y, x).
(g) d(x, z) ≤ d(x, y) + d(y, z).

Solution. (a). Part I (|x| ≥ 0):
Case I (x > 0): in this case, x is positive; hence, |x| = x > 0.
Case II (x < 0): in this case, x is negative; hence, |x| = −x. Since x is negative,
x = −d for some positive rational d. Hence |x| = −(−d) = (−1)(−1)(d) = d > 0.
Case III (x = 0): Then |x| = 0 ≥ 0.

3We can do this due to the density of the rationals in the reals.
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Part II:
( =⇒ ): suppose that |x| = 0. Assume that in addition, x > 0. By definition of
absolute value, |x| = x > 0; by trichotomy of order, |x| cannot both equal zero
and be greater than zero; hence, we get a contradiction, so x ≯ 0. Now assume
that in addition, x < 0. By definition of absolute value, |x| = −x; by Part I,
|x| ≥ 0. Thus, either |x| = 0 or |x| > 0. But if |x| = 0, then because |x| = −x,
x = −|x| = −0 = 0, a contradiction. Hence, if |x| = 0, x ≯ 0 and x ≮ 0, so by
trichotomy, x = 0.

(⇐= ): suppose that x = 0. Then |x| = x = 0 by definition.
(b). If x = 0, then |x+ y| = |0 + y| = |y| = 0 + |y| = |0|+ |y| = |x|+ |y|, with

an identical argument holding if y = 0. Hence, we only need to consider the
cases where x and y are positive or negative. Without loss of generality, assume
y > x.

Case I (y > x > 0): Since y and x are both positive, x+ y is also positive, so
|x+ y| = x+ y, |x| = x, and |y| = y. Hence, |x+ y| = |x|+ |y| =⇒ |x+ y| ≤
|x|+ |y|.

Case II (y > 0 > x): Since y > x, by properties of order, y + x > 0. Hence,
|x+ y| = x+ y. Since y > 0 and x < 0, |y| = y and |x| = −x, respectively. Thus,
suffices to show that x+ y ≤ y−x. Since x is negative, x = −d for some positive
rational d. Thus, suffices to show that y − d ≤ y − (−d) = y + d, which is true
by properties of order.

Case III (0 > y > x): y = −c for some positive rational c, and x = −d for
some positive rational d. Hence |x+ y| = |−c− d| = |−(c+ d)|, and since c+ d is
positive, −(c+d) is negative, so |−(c+d)| = −(−(c+d)) = (−1)(−1)(c+d) = c+d.
Also, |x| = |−d| = d, and |y| = |−c| = c. But c+d ≤ c+d, so |−(c+d)| ≤ |x|+|y|,
so |x+ y| ≤ |x|+ |y|.

(c). ( =⇒ ): Suppose that −y ≤ x ≤ y. We have three cases:
Case I (x = 0): Thus −y ≤ 0 ≤ y. But |x| = 0, and y ≥ 0, so y ≥ |x|.
Case II (x > 0): |x| = x; thus, suffices to show that y ≥ x. But this is given.
Case III (x < 0): |x| = −x; thus, suffices to show that y ≥ −x. We know

that −y ≤ x; by properties of order, −(−y) ≥ −x =⇒ y ≥ −x.
(⇐= ): By (a), |x| ≥ 0, so y ≥ 0. We have three natural cases:
Case I (x = 0): In this case, y ≥ 0 =⇒ y ≥ x. By properties of order,

y ≥ x =⇒ −y ≤ −x = −0 = 0 = x. hence −y ≤ x ≤ y.
Case II (x > 0): In this case, |x| = x, so y ≥ x. By properties of order,

−y ≤ −x. Since x is positive, −x < x by properties of order (since x is positive),
so −y ≤ x ≤ y.
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Case III (x < 0): In this case, x = −d for some positive rational d. Hence
|x| = −x = −(−d) = d. Thus y ≥ d. By properties of order, −y ≤ −d. Thus
−y ≤ x. Since −y ≤ x and y ≥ d, suffices to show that x ≤ d. But x = −d ≤ d
is true since d is positive, so we are done.

(d). If x = 0, then |xy| = |0y| = |0| = 0 = 0 · |y| = |0||y| = |x||y|; an identical
argument holds when y = 0. Thus, we can assume that x and y are nonzero.
Without loss of generality, let y > x. Then we have three cases:

Case I (y > x > 0): In this case, x and y are positive, so xy is positive; thus,
|xy| = xy, |x| = x, and |y| = y. Since xy = x · y, |xy| = |x||y|.

Case II (y > 0 > x): In this case, y is positive, and x = −d for some
positive rational d. Hence xy is negative; in particular, xy = −dy = −(dy),
where dy is a positive rational since d and y are both positive rationals. Thus
|xy| = −(xy) = −(−dy) = dy. Since x is negative, |x| = −x = −(−d) = d; since
y is positive, |y| = y. Combining the two, we get that |x||y| = dy = |xy|.

Case III (0 > y > x): Since x and y are negative, x = −d and y = −c for
positive rationals d and c, respectively. Hence xy = (−d)(−c) = (−1)d(−1)c =
dc; thus, xy is positive, so |xy| = xy = dc. Since x and y are negative,
|x| = −x = −(−d) = d, and |y| = −y = −(−c) = c. Hence, |xy| = dc = |x||y|.

(e). By definition, d(x, y) = |x − y|. Since x − y is a rational number, by
(a), |x − y| ≥ 0. In addition, by (a), |x − y| = 0 if and only if x − y = 0. But
d(x, y) = |x− y|, and x− y = 0 ⇐⇒ x = y, so d(x, y) = 0 ⇐⇒ x = y.

(f). d(x, y) = |x − y| = |−(y − x)| = |y − x| = d(y, x), where we used part
(d) for the third equality.

(g). Let a = x − y, and b = y − z. By (b), |a + b| ≤ |a| + |b|. Hence,
|x − y + y − z| ≤ |x − y| + |y − z|. Thus, |x − z| ≤ d(x, y) + d(y, z). Thus,
d(x, z) ≤ d(x, y) + d(y, z).

Problem (4.3.3). Prove Proposition 4.3.10: Let x, y be rational numbers,
and let n,m be natural numbers.

(a) We have xnxm = xn+m, (xn)m = xnm, and (xy)n = xnyn.
(b) Suppose n > 0. Then we have xn = 0 if and only if x = 0.
(c) If x ≥ y ≥ 0, the xn ≥ yn ≥ 0. If x > y ≥ 0 and n > 0, then xn > yn ≥ 0.
(d) We have |xn| = |x|n.

Solution. (a). For the first part, n and m are, conveniently, naturals, so we can
fix n and induct on m.

Base case (m = 0): xnx0 = xn1 = xn = xn+0.
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Inductive case: suppose xnxm = xn+m. Then xnxm++ = xnxmx by defini-
tion of exponentiation, which equals xn+mx by the inductive hypothesis, which
equals x(n+m)++ by the definition of exponentiation, which closes the induction.

For the second part, we do the same thing:
Base case (m = 0): (xn)m = (xn)0 = 1 = x0 = xn0 = xnm.
Inductive step: suppose (xn)m = xnm. Then we get that

(xn)m++ = (xn)m · xn

= xnm · xn

= xnm+n (By part I)

= xn×(m++)

which closes the induction.
For the last part, we do the same thing, but we induct on n:
Base case (n = 0): (xy)n = (xy)0 = 1 = 1 · 1 = x0y0 = xnyn.
Inductive step: suppose that (xy)n = xnyn. Then we have that

(xy)n++ = (xy)n(xy)

= xnynxy

= xnxyny

= xn++yn++

which closes the induction.
(b). ( =⇒ ): suppose xn = 0; we want to show that x = 0. Let’s do this by

induction!
Base case (n = 1): we know that x1 = 0; hence, x0++ = 0, so x0 · x = 0, so

1 · x = 0. We know at least one of 1, x must be zero by one of our lemmas of
rational numbers; hence, x = 0.

Inductive step: suppose xn = 0 =⇒ x = 0. Then xn++ = 0 =⇒ xn · x = 0,
which implies that either xn is zero or x is zero (or both). In the latter case,
we’re done. In the former case, xn is zero so x = 0 by the inductive hypothesis;
which closes the induction.

(⇐= ): Since n > 0, n = d+ + for some natural d. If x = 0, xn = xd++ =
xd · x = xd · 0 = 0.

(c). We do the first part by inducting on n.
Base case (n = 0): Clearly 1 ≥ 1 ≥ 0, so xn ≥ yn ≥ 0.
Inductive step: suppose that xn ≥ yn ≥ 0. Since yn ≥ 0 by the inductive

hypothesis and y ≥ 0 by assumption, yn++ = yn × y ≥ 0. Since xn ≥ yn by the
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inductive hypothesis and x ≥ y by assumption, xn++ = xnx ≥ yny = yn++ by
properties of order.

The second part is identical to the first part, except we start the induction
with n = 1 and observe that if a > b and c > d, then ac > bd.

(d). Let’s do this by induction. If we’re lucky, we won’t need to do casework.
Base case (n = 0): |x0| = |1| = 1 = |x|0 = |x|n.
Inductive step: suppose |xn| = |x|n. Then |xn++| = |xnx| = |xn||x| =

|x|n|x| = |x|n++, where we used properties of absolute value and the inductive
hypothesis at the second and third equivalences, respectively.

Problem (4.3.4). Prove Proposition 4.3.12: Prove Proposition 4.3.10 for
integers instead of rationals.

Solution. (a). If n and m are positive, this follows from Proposition 4.3.10.
If n is zero, xnxm = x0xm = 1xm = xm = x0+m = xn+m where m is zero holds
identically; (x0)m = 1m = 1 = x0 = x0m = xnm; (xy)0 = 1 = 1 · 1 = x0y0. If m
is negative, then m = −d for some positive integer d, so all the properties hold
for n and d. The negative sign is equivalent at the end.

(b). Same argument as (a).
(c). Same argument as (b).
(d). Same argument as (c).

Problem (4.3.5). Prove that 2N ≥ N for all positive integers N .

Proof. We proceed by induction (we can do this because positive integers=positive
naturals, where induction holds).

Base case (n = 1): 21 = 20 · 2 = 1 · 2 = 2 ≥ 1.
Inductive step: suppose 2N ≥ N . Then 2N++ = 2N · 2 ≥ N · 2 by the

inductive hypothesis. Thus, suffices to show that N · 2 ≥ N + +. We prove this
using induction:

Base case (n = 1): N · 2 = 1 · 2 = 2 ≥ 2 = 1 + + = N + +.
Inductive step: suppose N · 2 ≥ N + +. We want to show that N + + · 2 ≥

(N + +) + +. We do this as follows:

N + + · 2 = (N + 1) · 2

= N · 2 + 1 · 2

= N · 2 + 2

≥ N + + + 2 (By the inductive hypothesis)
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= N + + + 1 + 1

= (N + +) + + + 1

≥ (N + +) + +.

This closes both inductions.

Problem (6). Prove for natural n, rational b, and rational p ≥ 0, that if pn < b

then there is a rational q > p so that qn < b.

Proof. Consider the number x ∈ R such that xn = b.

Claim 0.2. If 0 < an < bn with a and b positive rationals, and n > 0, then
a < b.

Proof. We prove this via induction.
Base case (n = 1): Clearly a < b =⇒ a < b.
Inductive step: suppose that an < bn =⇒ a < b. Then if an++ < bn++,

since a and b are positive, ana < bnb =⇒ an < bn b
a . If b

a > 1, then by
properties of order, an < bn; by the induction hypothesis, a < b, a contradiction.
If b

a = 1, then b = a, then an = bn, so an++ = bn++, contradicting trichotomy.
Hence, a

b < 1, which means that a < b.

Using the density of the rationals in the reals, we can

Problem (7). Suppose Rother ⊇ Q,≥other is a linear order on Rother agree-
ing with the usual order on Q. Suppose R with ≤other is Dedekind complete,
Archimedean, and the rationals are dense in Rother. Prove that Rother is isomor-
phic to R over the rationals, meaning there is a bijection f : R→ Rother so that
f |Q is the identity, and x ≤ y iff f(x) ≤other f(y).


