Analysis HW \#6

Dyusha Gritsevskiy

February 2019

Problem (Rudin 2.16). Regard \mathbb{Q}, the set of all rational numbers, as a metric space, with $d(p, q)=|p-q|$. Let E be the set of all $p \in \mathbb{Q}$ such that $2<p^{2}<3$. Show that E is closed and bounded in \mathbb{Q}, but that E is not compact. Is E open in \mathbb{Q} ?

Solution. First, let's show that E is bounded in \mathbb{Q}. Consider the upper bound $u=20$. Take some $e \in E$. Suppose for contradiction that $e>u$. Then $e>20$. Then $e^{2}>400>3$, so $e^{2} \nless 3$, so $e \notin E$, a contradiction. Now, consider the lower bound $l=-1000$. Suppose for contradiction that $\exists e \in E$ such that $e<l$. But then $e<-1000$. Then $e^{2}>1000000$. But then $e^{2}>3$, so $e^{2} \nless 3$, a contradiction. Thus, we know that -1000 is a lower bound for E, and 20 is an upper bound for E. Hence, E is bounded in \mathbb{Q}.

Now, let's show that E is closed. Suffices to show $E^{c} \in \mathbb{Q}$ is open. We know that $\mathbb{Q} \subseteq \mathbb{R}$. Let $A=(-\infty,-\sqrt{3}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{3}, \infty) \in \mathbb{R}$, an open set ${ }^{1}$. Then $E^{c}=A \cap \mathbb{Q}$. By Theorem 2.30 in Rudin, E^{c} is open. Hence E is closed.

Now, let's show that E is open. Take any point $p \in E$. Then $2<p^{2}<3$. By Problem 6 on Homework 3, we can find a $\epsilon>0$ such that $(p+\epsilon)^{2}<3$. Also, we can find a $\delta>0$ such that $(2+\delta)^{2}<p$. Let $\gamma=\min (\delta, \epsilon)$. Then $N_{\gamma}(p) \subseteq E$, so p is an interior point. Hence E is open.

Now, let's show that E is not compact. We use the standard construction we used on the last homework-namely, the open cover where $G_{n}=\{p \in \mathbb{Q} \mid 2<$ $\left.p^{2}<3-\frac{1}{n}\right\} . \cup_{n=1}^{\infty} G_{n}$ covers E by the Archimedean property; however, there is no finite subcover that covers E.

Problem (Rudin 2.23). A collection $\left\{V_{\alpha}\right\}$ of open sets is said to be a base of X if the following is true: For every $x \in X$ and every open set $G \subseteq X$ such that

[^0]$x \in G$, we have $x \in V_{\alpha} \subseteq G$ for some α. In other words, every open set in X is the union of a subcollection of $\left\{V_{\alpha}\right\}$.

Prove that every separable metric space has a countable base. Hint: Take all neighborhoods with rational radius and center in some countable dense subset of X.

Solution. Let $D=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable dense subset of X. Let $V_{r}^{n}=$ $N_{r}\left(x_{n}\right)$, where r is a positive rational (and n is a positive natural). Since the rationals are countable and the naturals are countable, there is a countable number of such V_{r}^{n} 's ${ }^{2}$. Suffices to show that these V_{r}^{n} 's form a base. So fix some $x \in X$, and some open set G such that $x \in G \subseteq X$. By the definition of an open set, we can find some $\epsilon>0$ such that $N_{\epsilon}(x) \subseteq G$. Now, choose some $x_{i} \in D$ such that $d\left(x_{i}, x\right)=\gamma<\epsilon / 2$, which exists by density of D. Now, since \mathbb{Q} is dense in \mathbb{R}, choose some $q \in \mathbb{Q}$ such that $\gamma<q<\epsilon / 2$. Consider the neighborhood $N_{q}\left(x_{i}\right)$, which is in the base since q is rational. Since $d\left(x, x_{i}\right)=\gamma<q, x \in V_{q}^{i}$. But any point in V_{q}^{i} is in $N(x, \epsilon)$ (via the triangle inequality), so $x \in V_{q}^{i} \subseteq N_{\epsilon}(x) \subseteq G$, so it is a base, as desired.

Problem (Rudin 2.25). Prove that every compact metric space K has a countable base, and that K is therefore separable. Hint: For every positive integer n, there are finitely many neighborhoods of radius $1 / n$ whose union covers K.

Solution. Since K is compact, $\forall n \in I_{n}$, there are finitely many neighborhoods with radius $1 / n$ such that their union covers K. Take the union of all of these neighborhoods - since n ranges through every natural, and the number of neighborhoods for each n is finite, the total number of neighborhoods is countable. We claim that this forms a base. To show that it is a base, we need to show that it is countable (done) and dense. We show that in a way similar to the last problem-fix some x, and an open set G such that $x \in G \subseteq K$. By the definition of an open set, we can find some $\epsilon>0$ such that $N_{\epsilon}(x) \subseteq G$. Now, similarly to the last problem, we can find a point in the base less than ϵ away from x. Hence K is dense. Thus it is a base.

Problem (Rudin 2.26). Let X be a metric space in which every infinite subset has a limit point. Prove that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It follows that every open cover of X has a countable subcover $\left\{G_{n}\right\}, n=1,2,3, \ldots$. If no finite subcollection of $\left\{G_{n}\right\}$ covers X, then

[^1]the complement F_{n} of $G_{1} \cup \ldots \cup G_{n}$ is nonempty for each n, but $\cap F_{n}$ is empty. If E is a set which contains a point from each F_{n}, consider a limit point of E, and obtain a contradiction.

Solution. Rudin's hints rarely lead us astray, so let's follow the hint. By exercises 23 and $24, X$ has a countable base. So every open cover of X has a countable subcover $\left\{G_{n}\right\}, n \in \mathbb{N}^{+}$. We want to show that there is a finite subcollection of $\left\{G_{n}\right\}$ that covers X. Suppose not. Then the complement F_{n} of $G_{1} \cup \ldots \cup G_{n}$ is nonempty for any n (since if it were empty, there would be a finite subcover). However, $\cap F_{n}$ is empty (since if it were nonempty, then $\left\{G_{n}\right\}$ wouldn't be a cover). Now let $E=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set which contains a point from each F_{n}. Since it contains a point from each complement, $e_{i} \notin G_{1} \cup \ldots \cup G_{n}$. Since E has a point all the time in infinitely many intersections, E must be infinite. Now consider some limit point x of E. Then $x \in G_{i}$ for some i; since each G_{α} is open, $\exists \epsilon>0$ s.t. $N_{\epsilon}(x) \subseteq G_{i}$. But we know that $N_{\epsilon}(x)$ can't contain any other e_{j} for $j \geq i$! Hence x is not a limit point of E, got 'em!

Problem (Rudin 2.28). Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable. (Corollary: Every countable closed set in R^{k} has isolated points.) Hint: Use Exercise 27.

Solution. Let K be a closed set in a separable metric space. Since it is closed, it contains K^{\prime} (its limit points) as well as K^{p} (its condensation points). K^{p} is perfect by Exercise 27. But $K=K^{p} \cup\left(K \backslash K^{p}\right)$, where the former is a perfect set. Thus, suffices to show that $K \backslash K^{p}$ is at most countable. If K is countable, then K^{p} is empty, so we are done. So suppose K is uncountable. But then by Exercise 27, at most countably many points of K are not in K^{p}, so $K \backslash K^{p}$ is not uncountable. So we are done.

Problem (7). Let $a(x)$ be a function on \mathbb{R} such that
(i) $a(x) \geq 0$ for all x, and
(ii) There exists $M<\infty$ such that for all finite $F \subseteq \mathbb{R}$,

$$
\sum_{F} a(x) \leq M .
$$

Prove $\{x \mid a(x)>0\}$ is countable.
Solution. Let $K=\{x \mid a(x)>0\}$. We want to show that K is countable. Suppose not. Then K is uncountable. We construct a (countably) infinite chain
of subsets $K_{1} \subseteq K_{2} \subseteq \ldots \subseteq K$, where $K_{n}:=\{x \mid a(x)>1 / n\}$. We want to show that $\cup_{i=1}^{\infty} K_{i}=K$. If not, then $\exists v \in K$ such that $v \notin K_{i} \forall i$. But by the Archimedean property, we can find some m such that $1 / n<v$, so $v \in K_{m}$, a contradiction. Hence, $\cup_{i=1}^{\infty} K_{i}=K$. But by Theorem 2.12 in Rudin, the countable union of countable (or finite) sets is countable, and K is uncountable. Thus, $\exists j$ such that K_{j} is uncountable. But then we can always find an arbitrarily large number in K_{j} by the Archimedean property, so we can get a $\sum_{F} a(x)>M$, a contradiction.

Problem (3). Prove that $\mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ have the same cardinality.
Solution. We construct a bijection $f: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ by $f(A, B) \rightarrow$ $g(A) \cup h(B)$, where $g(A):=\{2 a \mid a \in A\}$ and $h(B):=\{2 b+1 \mid b \in B\}$. We now show that f is a bijection.

First, let's show that f is injective. That is, if $f(A, B) \neq f(C, D)$, then $(A, B) \neq(C, D)$. Choose some $(A, B),(C, D)$ such that $f(A, B) \neq f(C, D)$. Suppose for contradiction that $(A, B)=(C, D)$. Then $A=C$ and $B=D$. Since g and h are injections, $g(A)=g(C)$ and $h(B)=h(D)$. Hence $g(A) \cup h(B)=$ $g(C) \cup h(D)$, so $f(A, B)=f(C, D)$, a contradiction.

Now, let's show that f surjects onto $\mathcal{P}(\mathbb{N})$. That is, for any $X \in \mathcal{P}(\mathbb{N})$, we would like to find a pair $(A, B) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ such that $f(A, B)=X$. Observe that any $X \subseteq \mathbb{N}$; hence, we can write $X=E \cup O$ where E consists of even naturals, and O consists of odd naturals ${ }^{3}$. Since E consists of even naturals, every $e \in E$ is in the form $2 a, a \in \mathbb{N}$; similarly, every $o \in O$ is in the form $2 b+1$, $b \in \mathbb{N}$. Thus, let $A=\{e / 2 \mid e \in E\}$, and $B=\{(o-1) / 2 \mid o \in O\}$. It follows from the form of the elements that $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$. Hence, $(A, B) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$, and $g(A)=E$ and $h(B)=O$, so $g(A) \cup h(B)=E \cup O=X$, as desired.

[^2]
[^0]: ${ }^{1}$ Since the union of open sets is open, and open intervals in \mathbb{R} are open sets.

[^1]: ${ }^{2}$ This is true since \mathbb{N} and $\mathbb{N} \times \mathbb{N}$ have the same cardinality-consider the bijection f : $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ via $(m, n) \mapsto 2^{m}(2 n+1)-1$.

[^2]: ${ }^{3}$ We can do this since every natural number is either even or odd.

