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Problem (Rudin 2.16). Regard Q, the set of all rational numbers, as a metric
space, with d(p, q) = |p− q|. Let E be the set of all p ∈ Q such that 2 < p2 < 3.
Show that E is closed and bounded in Q, but that E is not compact. Is E open
in Q?

Solution. First, let’s show that E is bounded in Q. Consider the upper bound
u = 20. Take some e ∈ E. Suppose for contradiction that e > u. Then e > 20.
Then e2 > 400 > 3, so e2 ≮ 3, so e /∈ E, a contradiction. Now, consider the
lower bound l = −1000. Suppose for contradiction that ∃e ∈ E such that e < l.
But then e < −1000. Then e2 > 1000000. But then e2 > 3, so e2 ≮ 3, a
contradiction. Thus, we know that −1000 is a lower bound for E, and 20 is an
upper bound for E. Hence, E is bounded in Q.

Now, let’s show that E is closed. Suffices to show Ec ∈ Q is open. We know
that Q ⊆ R. Let A = (−∞,−

√
3) ∪ (−

√
2,
√

2) ∪ (
√

3,∞) ∈ R, an open set1.
Then Ec = A ∩Q. By Theorem 2.30 in Rudin, Ec is open. Hence E is closed.

Now, let’s show that E is open. Take any point p ∈ E. Then 2 < p2 < 3. By
Problem 6 on Homework 3, we can find a ε > 0 such that (p+ ε)2 < 3. Also,
we can find a δ > 0 such that (2 + δ)2 < p. Let γ = min (δ, ε). Then Nγ(p) ⊆ E,
so p is an interior point. Hence E is open.

Now, let’s show that E is not compact. We use the standard construction we
used on the last homework—namely, the open cover where Gn = {p ∈ Q | 2 <
p2 < 3− 1

n}. ∪
∞
n=1Gn covers E by the Archimedean property; however, there is

no finite subcover that covers E.

Problem (Rudin 2.23). A collection {Vα} of open sets is said to be a base of X
if the following is true: For every x ∈ X and every open set G ⊆ X such that

1Since the union of open sets is open, and open intervals in R are open sets.
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x ∈ G, we have x ∈ Vα ⊆ G for some α. In other words, every open set in X is
the union of a subcollection of {Vα}.

Prove that every separable metric space has a countable base. Hint: Take all
neighborhoods with rational radius and center in some countable dense subset
of X.

Solution. Let D = {x1, x2, . . .} be a countable dense subset of X. Let V nr =
Nr(xn), where r is a positive rational (and n is a positive natural). Since the
rationals are countable and the naturals are countable, there is a countable
number of such V nr ’s2. Suffices to show that these V nr ’s form a base. So fix some
x ∈ X, and some open set G such that x ∈ G ⊆ X. By the definition of an open
set, we can find some ε > 0 such that Nε(x) ⊆ G. Now, choose some xi ∈ D such
that d(xi, x) = γ < ε/2, which exists by density of D. Now, since Q is dense in
R, choose some q ∈ Q such that γ < q < ε/2. Consider the neighborhood Nq(xi),
which is in the base since q is rational. Since d(x, xi) = γ < q, x ∈ V iq . But any
point in V iq is in N(x, ε) (via the triangle inequality), so x ∈ V iq ⊆ Nε(x) ⊆ G,
so it is a base, as desired.

Problem (Rudin 2.25). Prove that every compact metric space K has a count-
able base, and that K is therefore separable. Hint: For every positive integer n,
there are finitely many neighborhoods of radius 1/n whose union covers K.

Solution. Since K is compact, ∀n ∈ In, there are finitely many neighborhoods
with radius 1/n such that their union covers K. Take the union of all of
these neighborhoods—since n ranges through every natural, and the number
of neighborhoods for each n is finite, the total number of neighborhoods is
countable. We claim that this forms a base. To show that it is a base, we need
to show that it is countable (done) and dense. We show that in a way similar to
the last problem—fix some x, and an open set G such that x ∈ G ⊆ K. By the
definition of an open set, we can find some ε > 0 such that Nε(x) ⊆ G. Now,
similarly to the last problem, we can find a point in the base less than ε away
from x. Hence K is dense. Thus it is a base.

Problem (Rudin 2.26). Let X be a metric space in which every infinite subset
has a limit point. Prove that X is compact. Hint: By Exercises 23 and 24, X
has a countable base. It follows that every open cover of X has a countable
subcover {Gn}, n = 1, 2, 3, . . .. If no finite subcollection of {Gn} covers X, then

2This is true since N and N × N have the same cardinality—consider the bijection f :
N× N→ N via (m, n) 7→ 2m(2n + 1)− 1.
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the complement Fn of G1 ∪ . . . ∪Gn is nonempty for each n, but ∩Fn is empty.
If E is a set which contains a point from each Fn, consider a limit point of E,
and obtain a contradiction.

Solution. Rudin’s hints rarely lead us astray, so let’s follow the hint. By exercises
23 and 24, X has a countable base. So every open cover of X has a countable
subcover {Gn}, n ∈ N+. We want to show that there is a finite subcollection of
{Gn} that covers X. Suppose not. Then the complement Fn of G1 ∪ . . . ∪Gn is
nonempty for any n (since if it were empty, there would be a finite subcover).
However, ∩Fn is empty (since if it were nonempty, then {Gn} wouldn’t be a
cover). Now let E = {e1, e2, . . . , ek} be a set which contains a point from each
Fn. Since it contains a point from each complement, ei /∈ G1 ∪ . . . ∪Gn. Since
E has a point all the time in infinitely many intersections, E must be infinite.
Now consider some limit point x of E. Then x ∈ Gi for some i; since each Gα is
open, ∃ε > 0 s.t. Nε(x) ⊆ Gi. But we know that Nε(x) can’t contain any other
ej for j ≥ i! Hence x is not a limit point of E, got ’em!

Problem (Rudin 2.28). Prove that every closed set in a separable metric space is
the union of a (possibly empty) perfect set and a set which is at most countable.
(Corollary: Every countable closed set in Rk has isolated points.) Hint: Use
Exercise 27.

Solution. Let K be a closed set in a separable metric space. Since it is closed,
it contains K ′ (its limit points) as well as Kp (its condensation points). Kp is
perfect by Exercise 27. But K = Kp ∪ (K \Kp), where the former is a perfect
set. Thus, suffices to show that K \Kp is at most countable. If K is countable,
then Kp is empty, so we are done. So suppose K is uncountable. But then by
Exercise 27, at most countably many points of K are not in Kp, so K \Kp is
not uncountable. So we are done.

Problem (7). Let a(x) be a function on R such that
(i) a(x) ≥ 0 for all x, and
(ii) There exists M <∞ such that for all finite F ⊆ R,∑

F

a(x) ≤M .

Prove {x | a(x) > 0} is countable.

Solution. Let K = {x | a(x) > 0}. We want to show that K is countable.
Suppose not. Then K is uncountable. We construct a (countably) infinite chain
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of subsets K1 ⊆ K2 ⊆ . . . ⊆ K, where Kn := {x | a(x) > 1/n}. We want to
show that ∪∞

i=1Ki = K. If not, then ∃v ∈ K such that v /∈ Ki ∀i. But by
the Archimedean property, we can find some m such that 1/n < v, so v ∈ Km,
a contradiction. Hence, ∪∞

i=1Ki = K. But by Theorem 2.12 in Rudin, the
countable union of countable (or finite) sets is countable, and K is uncountable.
Thus, ∃j such that Kj is uncountable. But then we can always find an arbitrarily
large number in Kj by the Archimedean property, so we can get a

∑
F a(x) > M ,

a contradiction.

Problem (3). Prove that P(N) and P(N)× P(N) have the same cardinality.

Solution. We construct a bijection f : P(N) × P(N) → P(N) by f(A,B) →
g(A)∪ h(B), where g(A) := {2a | a ∈ A} and h(B) := {2b+ 1 | b ∈ B}. We now
show that f is a bijection.

First, let’s show that f is injective. That is, if f(A,B) 6= f(C,D), then
(A,B) 6= (C,D). Choose some (A,B), (C,D) such that f(A,B) 6= f(C,D).
Suppose for contradiction that (A,B) = (C,D). Then A = C and B = D. Since
g and h are injections, g(A) = g(C) and h(B) = h(D). Hence g(A) ∪ h(B) =
g(C) ∪ h(D), so f(A,B) = f(C,D), a contradiction.

Now, let’s show that f surjects onto P(N). That is, for any X ∈ P(N), we
would like to find a pair (A,B) ∈ P(N)×P(N) such that f(A,B) = X. Observe
that any X ⊆ N; hence, we can write X = E ∪ O where E consists of even
naturals, and O consists of odd naturals3. Since E consists of even naturals,
every e ∈ E is in the form 2a, a ∈ N; similarly, every o ∈ O is in the form 2b+ 1,
b ∈ N. Thus, let A = {e/2 | e ∈ E}, and B = {(o−1)/2 | o ∈ O}. It follows from
the form of the elements that A ⊆ N and B ⊆ N. Hence, (A,B) ∈ P(N)×P(N),
and g(A) = E and h(B) = O, so g(A) ∪ h(B) = E ∪O = X, as desired.

3We can do this since every natural number is either even or odd.


